Ver 1.00

closer to Real ROBOTIS
BIOLOID

‘User’s Guide

EIONQID

Contents
1. Before Starting
1-1. A Word of Caution Page 4
1-2. What is Bioloid? Page 6
1-3. Things to Understand Before Starting Page 8
1-4. Package Contents Page 11
2. Learning the Basic Operations
2-1.The CM-5 and Its Operation Modes Page 13
2-2. Behavior Control Program Page 15
2-3. Examples of Simple Behavior Control Page 17
2-4. Understanding ID, Address, and Data Page 27
3. Assembling Basic Robots
3-1. Connecting Frames Page 32
3-2. Wiring and Power Page 33
3-3. Frequently Used Behavior Control Routines Page 35
3-4. Assembling Robot Arm Page 37
4. Behavlor Control Programmer
4-1. Opening a File Page 43
4-2. Editing Function of the Behavior Control Programmer Page 44
4-3. Syntax of the Behavior Control Program Page 49
5. Reciprocal Operation Using Sensors
5-1. The AX-S1 Sensor Module Page 56
5-2. Distance Sensing Function Page 57
5-3. Sound Sensing Function Page 58
9-4. Assembling Attacking Duck that Uses Sensor Page 59
9-5. Surrounding Light Sensing Function Page 64
5-6. Melody Playing Function Page 65
5-7. Assembling Intelligent Car that Uses Sensor Page 68
6. Motion Editor
6-1. Using the Motion Editor Page 75
6-2. Motion Editing Using the Robot Terminal Page 84
6-3. Walking Droid Robot’ s Program Page 91

EIONQID

7. Building a Wireless Remote Control
7-1. Infrared Communication Program Using the AX-S1 Page 97
7-2. Building RF Wireless Remote Control Using the ZIG-100 Page 101
7-3. Walking Droid Program Controlled by the RF Wireless Remote Control Page
105

8. Management Mode
8-1. Setting the ID and Dynamixel Search Page 108
8-2. Other Commands Page 111

9. Information for Advanced Users

9-1. Boot Loader Page 116
9-2. Using the C Program Language Page 119
9-3. Compiling Page 120
9-4. Example.c Page 126

10. Blolold Program Update
10-1. CM-5 Program Update Page 135
10-2. Dynamixel AX-12 Program Update Page 139

EIONQID

1. Before Starting
1-1. A Word of Caution

A Note on Safety
The user is responsible for any accidents that occur while building the robot. Before
starting, please remember the following.

= Read and study the manual before starting.

= The recommended age for this product is 12 years and older. Those under 15
years must work under supervision.

= Only use the recommended tools and do not use any dangerous tools, such as
knives or drills.

= Do not work on this product if you are feeling sick or feel fatigue, and especially
under influence of alcohol.

= Keep the robot away from your face.

= Keep the robot or its parts away from children.

= Be careful not to get your finger be caught between the joints.

= The product is not waterproof so be cautious when handling near water.

= Only operate the robot indoors.

= Do not operate or store it in under direct sunlight.

= Do not operate or store it near open flames or in humid environments.

Robot Malfunction
If any of the following occurs, immediately turn off the power and contact a
supervisor or the company.

= When you see smoke coming out of the product.

= When the LED does not blink after power is connected.
= When water or foreign substances enter the robot.

= When you detect an unnatural smell from the product.
= When the robot is damaged.

Recharge Problem
After powering on, when you connect to SMPS and press @ button, the Power LED will
blink and will began recharging. If there is a problem with recharging, make sure that
fuse is not out. [Refer to the QuickStart for exchanding a fusel

EIONQID

Notes Please note the following.

= The beginner should not use self-made cables.

= Only use the right size screw drivers.

= Do not use excess force when tightening the bolts or assembling the parts.

= Turn off the power immediately to avoid damage to the robot if a joint gets
twisted caused by the inappropriate motion settings during development.

= If this is the first time you are building a robot, please build a robot in the
QuickStart following the instructions. A custom-built robot should only be
attempted if you have at least six months experience with the robots.

= To prevent the robots from falling, do not place the robot on a high location such
as on top of a table or desk. Always operate the robot on the ground. If the robot
is damaged due to a fall, it will be ineligible for free repair.

= The joints of the robot and the gears inside the Dynamixel are susceptible to
wear. After a period of time, the backlash of the robot will increase, especially if
excessive load is applied.

= When operating the robot with the SMPS, make sure the robot doesn’ t fall and
refrain from excessive movements. This can cause the SMPS cable to break.

Recommended Tools
= Phillips head screwdriver: M2 size
= Flat head slotted screwdriver: Use if the bolt’ s groove wears out. Do not use
any other tools. The use of dangerous tools can cause accidents.

Bullding a Robot
= Don’ t attempt to make a robot with more than ten joints if you are a beginner.
You may need many practices before trying to build a complex robot.
= This User s Guide shows how to build the Robot Arm [(3—-degree of freedom), and
the Walking Droid(4- degree of freedom).

EIONQID

1-2. What is Bioloid?

Bioloid The Bioloid is a robot kit where the user can build anything they desire, just like
the Lego sets. But unlike the Lego sets, the robot is built with blocks that are
actuated, so the joints can move. The name “Bioloid” comes from the
words “Bio” + “all” + “oid” meaning that any living thing can be built in the
form of a robot.

The following are some examples of what can be built with the Bioloid kit. In
addition to below, many other forms of robots can be built.

[Examples of Bioloid Robots]

Function With the use of a distance sensor, sound sensor, and feedback from the joints,
the robot can be programmed to operate autonomously. For example, you can
build a robot dog that gets up when it hears a clap and sits down when it hears
two claps, or a robot that bows when a person comes close. You can also make a
robot that avoids obstacles or a robot that plays with a ball. A robot that can
move by the pressing of buttons or by using the remote control (option) can also
be built. Using the provided software, even people without a background in
robotics can easily program these Kinds of robot movements.

EIONQID

1-3. Things to Understand Before Starting

Hardware

Software

Before putting the robot together there are a few basics that you have to
understand. First of all, let’ s study about the Bioloid” s hardware and software.
The terms used here will be mentioned often throughout the manual so it is
important that you understand them.

The hardware of the Bioloid consists of three types.

Dynamixel: This is the basic unit of the Bioloid which acts as a joint or a sensor.
The AX-12 Dynamixel is an actuator that is used as a joint. The AX-S1 Dynamixel is
a sensor unit that can sense both distance and sound.

CM-5: This is the main controller of Bioloid robot. Batteries that are placed here
supply power to the connected Dynamixel.

Frame: The frame connects the robot units. The Dynamixel can be connected
together with the use of the frame. Also, the frame connects the Dynamixel and
the CM-5.

Dynamixel

There are three pieces of software supplied for use with the Bioloid.

Behavior Control Programmer: This is used for creating a program that controls
the robot behavior. The program is used to implement the motion the robot
follows according to the information received through input devices such as
Sensors.

Motion editor: It is not easy constructing the complex motion of multi-joints
robots with the Behavior Control Programmer only. Motion Editor is software that
helps the creation of robot motions and that calls it whenever it is required.
Robot Terminal: This is @ type of @ serial communication terminal program where
advanced users often use to see information displayed on the screen sent by the
robot and also to send the characters typed on the keyboard to the robot.

EIONQID

Assembling Process
The step of developing a Bioloid robot

Read the User’ s Guide

Decide the configuration and function of the robot

Connecting the Dynamixel units around the CM-5

Cable connection (beware of connector direction
and length of the cable)

Y

Simple motion verification (use Motion Editor)

4 T\
/

Behavior control programming

&

Step 7 Editing the motion (use Motion Editor]

Step 1 Read and completely understand the manual before trying to build a robot. The
manual consists of nine chapters and the first five chapters are intended for
beginners. The User's Guide presents examples of developing the Robot Arm and
the Walking Droid (two-legged robot). Once you have completely understood the
User's Guide, you can explore various robot configurations and experiment with
the program in depth.

Step 2 This is where you decide what kind of robot you will be building. With the Bioloid
kit, you can make all kinds of robots. If you are a beginner, however, we
recommend that you first make the robot that is shown in this User's Guide.

Step 3 Step 3 is the building stage. First, connect the Dynamixel units to the CM-5 unit as
the center unit. Connect other Dynamixel units to this to create joints and expand
to complete the robot. Secure each part with nuts and bolts.

EIONQID

Step 4 After the configuration of the robot is completed, the next step is to connect the
cables. Having the CM-5 unit as the center, the wires are connected to, and
through the Dynamixel units. Each cable is made up of three wires. Two of the
wires are for power and one is for communication. Make sure the cables are long
enough so that they allow the joints to bend all the way in either direction.
Connect the cables in a daisy chain fashion as shown in the figure below.

[PC_LINK] [
—CM-§
RXD feded

N N |

Control Box “CM-5”

The steps up to here complete the building of the robot hardware. The
configuration of the robot is decided in Steps 1, 2, 3, 4 and the function of the
robot will be decided through programming in Steps 5, 6, 7.

Step 5 After you are done building the robot, use the motion editor program to make
sure the robot is properly put together. Make sure all the Dynamixels are
communicating with the CM-5 unit properly. To check if the joints are working
properly, test them by moving each of the joints slightly.

Step 6 In step 6, you will create the behavior control program of the robot. Behavior
control is simply telling the robot to take some Kind of action when it enters a
certain state. For example, when the robot is walking forward through a narrow
path, you can make it walk through the center of a path. Or, if there is something
blocking the way, you can make it turn around and go the other way. The behavior
control program takes the form of rules which defines the appropriate motion the
robot should output for specific input information it receives from the sensors.

Step 7 In step 7, you will create the motion of the robot. For robots that use wheels, step
7 is unnecessary because all you have to do to move the wheels is to set the

position or velocity settings of the Dynamixel. But it would be difficult to make a

puppy robot sit or a humanoid robot walk by changing each of its joint angles

individually. In order to move a complicated multi-jointed robot, you have to

“call” a pre-made movement.” This “pre-made movements® (motions) are

what you will create here in step 7. The behavior control program of step 6 will be

able to “call” these “pre-made movement” (motions) of step 7. Step 7

shouldn't be taken after you are done with step 6, but rather together with step 6.

EIONQID

PC Requirements

= PG : IBM compatible (Required)
= 0S : Windows 2000 or Windows XP (Required)
= CPU: Intel Pentium Il 1GHz or AMD Athlon XP 1GHz or higher (Recommended]
= RAM: 256MB or higher (Recommended)
= Graphic Card : 3D acceleration function (Direct 3D supported) (Required)
= HDD free space : at least 300MBytes (Recommended]
= Direct X 8.0 or higher (Required)

10

EIONQID

1-4. Package Contents
(Beginner kit s parts]

* Nuts, screws, and cables shown below are the same as the actual size. Place and measure the parts against the below
illustration to choose the correct assembly part.

(W) 150 %i | 5| rosies]2
i o

[
o

e

L
= DTSR

Ind
=)
Cal ‘
=])

waen |

1

EIONQID

(Comprehensive kit s parts)

,,,,,,,,,,,,,,,,,,,,,,,

Expansion PCB |< 1

ADAPTOR-CM5|< 1

=
\ o & & 0O
GBS GH (BU*20 (WAx20 (SPDx<4 (SP2~<4 [STICKER|<32 | FUSE |x1

% Nuts, screws, and cables shown below are the same as the actual size. Place and measure the parts against the
below illustration to choose the correct assembly part.
u] Q—
%: ql = || CABLE-6 (<6
4=
= 5
E IE ;E
CABLE-10 <4
L
m I T
= L g) CABLE=14 | <6
[:
!)
. CABLE-18 <4
m I T
m 1_! \D
CABLE-20 <5

12

EIONQID

2. Learning the Basic Operations
2-1. The CM-5 and Its Operation Mode.

CM-5 The CM-5 is the main controller for the Bioloid. AS mentioned previously, the robot
is built by connecting the Dynamixels to the CM-5 as the central unit. In order to
understand how the Bioloid works, you first have to understand how the CM-5

operates.
Serial Cable Jack
POWER Status display LED
Power JACK
~ ON-OFF

Start button

ROBOT]

— Mode button

Direction buttons Mode display LED

[Top view of the CM-5

Applying Power Let’ s now apply power to the CM-5 unit. Plug the SMPS into the power jack on
the upper left corner. Then turn the power switch on. One of the mode display
LEDs should be blinking. As you press the mode change button, the mode LED will
change sequentially. Currently, it is in standby mode.

Operating Modes The operating modes of the CM-5 unit is as follows

= Manage mode: This is used when you want to know the status of the CM-5 unit or
the Dynamixels, or when you want to test the motion. This mode should only be
used by advanced users who are very confident with operating the robot.

= Program mode: The mode used for editing the motion.

= Play mode: The mode used for running the behavior control program created.

= Standby mode: The mode before running the other three modes.

= Charging mode: In standby mode, if the SMPS is connected, battery charging will
begin when you press the U button.

13

EIONQID

Execution If you press the start button during standby mode the CM-5 unit will go into the
mode that you have selected. To go back into standby mode you can press the
mode change button or turn the power switch off and then back on again.

@ The mode change button is the reset button for the CPU inside the CM-5 unit.
Therefore, when the power is on, the CM-5 will go back to standby mode
whenever the mode change button is pressed.

Serial Gable In order to communicate with a PC, the CM-5 unit has to be connected to it using
a serial cable.

= When using a laptop: Most laptops do not have a serial port, thus you will have to
purchase and use a USB to serial converter device. USB2Serial can be purchase
at local computer stores.

Status Display LED
There are the four LEDs that indicate the status of the CM-5 unit. The definitions
of each are as follows.

= Power: If the power is on, this LED will be on. The LED will blink when the batteries
inside the CM-5 unit are charging. Recharging starts when the SMPS is connected
to the power jack and the U button is pressed in standby mode.

= TXD: This LED is on when the CM-5 unit is transmitting data.

= RXD: This LED is on when the CM-5 unit is receiving data.

= AUX: This LED is assigned for user programming. It can be turned on or off with the
behavior control program.

Direction Buttons
These buttons are also assigned for user programming like the AUX LED.

14

EIONQID

2-2. Behavior Control Program

Installation

Input and Output

A robot is a machine that can behave in various ways. However, it can do so only
when there is a program that tells how the robot should act for a certain
situation. This program is called the “behavior control program.” A behavior
control program is a series of rules that define the action a robot should take for
the given state. Insert the provided CD into the PC and install the software used
for creating the behavior control program.

You can Install following three programs.
Behavior Control Programmer
Motion Editor

Robot Terminal

The following screen appears when you run the behavior control programmer.

#f Bohavior Control Programmer (Blolold)

The behavior control program takes the form of a series of rules that mutually
connect the input and output. For example, let’ s say that we want to build a
robot dog that stands up when you clap once and sits down when you clap twice.
The input item (clap once or twice) and the output item (stand up or sit down)
have to be predefined. Also, behavior rules need to be defined that tells what
behavior to output for the given input item (clap once or twice).

15

EIONQID

The followings are the general expression sentences for these behaviors.

= If input item 1 occurs, then execute output A.
= If input item 2 occurs, then execute output B.

Thus, understanding what types of input and output items are available is
important to writing a behavior control program. Learning how to use the Bioloid
is to learn about the input and output items. Let’ s practice creating a simple
behavior control program using the CM-5 unit’ s input and output items now.

16

EIONQID

2-3. Examples of Simple Behavior Control

There are several buttons and LEDs on the CM-5 unit that is user definable. Five
out of the total six buttons (except the mode change button) and the AUX LED can
be used for such purposes in Behavior Control Programmer.

AUX LED
/

T
LLLL]

ON-OFF PC LINK "4 [@M-B
(f L
O =N =

MANAGE [() Start button

PLAY 3 @ © Mode button

Direction buttons Top view of the CM-5

Let’ s create a behavior control program as the following.

= Make a program that will turn on the AUX LED when the U button is pressed and

turn off the AUX LED when the @ button is pressed.

Create a new file from the Behavior Control Programmer, as shown in the figure
below.

¢! Beharior Control Programmer (Bioloid)

Yiew Managerment Help

Mew CtH] e 22 » Select
dpen,.. Cirl+0

The following screen will show up.

17

EIONQID

of File Edit Program Mansgement View Window Help
DM ey 2 Y

“Start” Left double-clicks the first cell in the Behavior Control Programmer. The following
commands should appear. Select “START.”

< Behavior Control Programmer (Bioloid) - [Programi]
=3 File Edit Program Management Miew Window Help
BRI

[Label]

1

The “START” command does not instruct a specific action, but rather it tells
that the program is starting. You can see that the first cell is used for
commands. There are around ten commands that are available for the behavior
control program and we have already learned one of them.

‘I The command that we want to input is “if the @ button is pressed.”

18

EIONQID

Double—-clicks the first cell of the following line and select the command “If.”

< Behavior Control Programmer (Bioloid) - [Programl]
x%' File Edit Program Management Yiew Window Help

De M| & 2|y j 7

[Label]

1

ELSE

Parameters There are some commands that need to be used together with a number or
symbol. For example, the command “START” does not require any number or
symbol to be used with, but the a command like “compute 1 + 2" requires the
numbers “1”, “2” and the symbol “+” The command “If” compares two
items so it requires several parameters. Let' s implement the input command “IF
© is pressed” using several parameters.

. “IF (button status = @ button) then”
As mentioned earlier, in order to understand and program a behavior control
program, you have to learn about the available input and output items. Here, we
have to find the “© button” input item that has been used as a parameter.
To select the button status parameter, double-clicks on “undefined” and select
CM-5. Then select the “CM-5 button” item.

D M| &5
[Labell

[Label] [Label]

[Label]

2 I ...
IF { - l Undefine
Typing
! Double click!

Double click!

Dynamizel

Double click!

-z Other robot ID n
G .
A4 |

[Select CM-5 first.] [Then select item]

19

EIONQID

Now select the ©® button. Double-click the parameter on the opposite side and
check the location of the @ button.

DM & B2R Yy F|7
[Label]

The next step is to select the operator that compares the two parameters. Select
the equal sign.

[Label]

START

[Label]

Double click!

Double click!

20

EIONQID

“oad”

If you have done everything correctly, your screen should look like the figure
below.

rLsten S | Icommen 1]

msbesy e mommen t]

Double click!

! ommena
(1]

Now we have finished making the complete command sentence, “If (button
status = ©@ button), then.” It seems difficult at first but after practicing several
times it should become natural.

The behavior control program expresses the command, “Turn on the LED” as

“Load LED < 1.” Loading 1 mean “ON” and loading 0 means “OFF” for the
LED. Double-click the undefined cell and type in the command sentence. Select
the “LOAD” command.

[Label]

START

sben . |commen

COMPUTE ﬁ
CaLL ﬁ

Select the “AUX LED” item from the CM-5 item as the left parameter of
“I-OAD.!!

F

[Comment]

mmmmm

% remocon data

% Other robot ID 2 ii

Faotion play page J

21

EIONQID

For the right parameter a number is needed, so first select “INPUT” and then
type in the number 1.

[Gomment]
j LOAD J%HU}{LE...Z CME

Dynarnixzel

Editing USHO 2SS [P0 28, 28 MMl dXIE 2 Y 2ZE SHE XLHU S

Select the number of the sentence that you want to edit. If you press the shift
button and click on a sentence and then another sentence down the list, then
both sentences and all the sentences between the two will be selected
altogether. After you have selected the sentences that need to be edited you
can right click to display to the edit menu as shown below.

<¢ Behavyior Control Programmer (Bioloid) - [Programi]
=5 File Edit Program Management Yiew Window Help
Lh=E & 2

Ctrl+x
Ctrl+C

Insert Line Ctrl+
Delete Line Del
Enable/Disable Line Cirl+E

Double click!

Let’ s create the second behavior control sentence using the same method as
we used for the first one.

. “If you push the ©® button the LED will turn off.”

22

EIONQID

This can be expressed in a behavior control program as the following.

= |f [CM-5 button = @ button) then LOAD CM-5 LED < 0.
If you do everything correctly it should look like this.

sbeg - |[commen

I - I
IF | ‘% Butto | ‘ = | ‘% S| | THEN LOAD ‘ @AUXLE ‘ | ‘

[Label] [Gomment]

IF | @ Button @ THEMN LOAD ALK LE..
im

Finally you have to state the end of the program. Everything that you have done
so far should be like the following.

| L iae | % 5 WY | E
[Labell [GComment]
[Labell [Comment]
Z IF ‘(‘% Button ‘ ‘@ gl THEN ‘ LOAD ‘ ‘@AUXLE Z*‘ 1 ‘ ’i
[Labell [Gomment]
3 IF ‘ ‘% Button ‘ ‘@ ‘ ‘ THEN ‘ LOAD ‘ ‘%F\UXLE “ 0 ‘ ’7
[Labell [Comment]
4 T
— ||

Save Let’ s save everything that we have done so far. To save a program, you can
either use the menu or click on the tool bar icon. Saving is done in the same way
as in any other computer program. The figure below shows how this is done.

< Behavior Control Programmer {Bioloid) - [Programl]

< Behavior Control Programmer (Bioloid) - [Programi]

Y Edit Program Management Wiew Window Help =3 FlegZl Program Management Mlew Window Help
0 Hew Ctrl+hl [‘:;? k74 EEE BRI
Open,.. Ctl+0 [Tio-o
(=
| Et Button = ‘ ‘@
[Label]
‘(‘@ Button] ‘ ‘%
[Label]
[Saving with the use of the menul [Saving by clicking on the toolbar]
Download To download the behavior control program onto the robot, the robot and the computer

needs to be connected to each other with a serial cable as shown in the figure below.
To download the behavior control program, the Bioloid robot has to be turned on.

23

EIONQID

Connect to é =

Connect to the PC

[Connecting the serial cablel

Click on the download toolbar icon. The following dialog box will show up.
S A I

[Commet

Download Program

ent Download I Cammet

(% File name : Button&ndLED, bpg LOA
Send / Taotal (byte) 0739

[Commet

Commet

If the CM-5 unit and the behavior control programmer are not connected properly,
then the following error message will show up.

% B !E Can not connect CM-El
.

In such cases check the following in order.

= s the serial cable connected properly?
= IS the robot’ s power on?
= Is any other program running?

24

BIOHOID

Finish

Program Editing

Jump

User s Guide ROBOTIS

Is the COM port on your PC set up properly?
This is how to set up the COM port on vour PC.

With the serial cable disconnected, click on the COM port set up button, which is
on the bottom left corner of the program download screen.
Select the correct COM port that the cable is connected, such as COM1 and COM2.

If the download is finished successfully, the following screen will appear and the
robot will be in standby mode. If you press the play button, the behavior control
program that was just downloaded will execute.

¢ @a File name ¢ ButtonAndLED.bpg L0
i Send / Total (byte) 39 /39

Y 2

{ Eﬁjg Play LO

How did the program run?

It may seem like the program didn't run at all and the robot is still in standby
mode. But actually, the robot did indeed enter the play mode for a very short
period of time and then exit back to the standby mode.

If you think about it carefully, you should realize that this is exactly what was
supposed to happen. After the “START” command, two “IF” statements were
executed and then the program was terminated.

For the program to work properly, the two “IF” statements need to be repeated
continuously. For the second statement [the first “IF” statement), type in an
appropriate name in its label. Then, insert a line between the third statement (the
second “IF” statement] and the fourth statement [“END”) and create a

“JUMP” command. In the parameter after the “JUMP” command, type in the
name of the item of the line you want the program to jump to.

25

EIONQID

Now download the program again and see

how it executes. If it does not work properly, :] -
go over the program and check if there are] Eiiiir
any errors. If it still doesn't work then open l s ' |

and download (Examples\ExamplelButton and e T - (&)
LED.bpa) from the provided CD. This file is the

[La_bfe\]
source file for the example shown above. QQJMJAJ@j

JUmP WiaitEv. =i=il

[Label]

P We have pressed the play button and .

execute the program by entering the play

mode while the PC was connected to the Behavior Control Programmer. When a
PC is not connected, you can execute a program by manually entering the play
mode by pressing the mode change button and then pressing the start button.

26

EIONQID

2-4. Understanding ID, Address, and Data

Address

Data

So far we have learned how to create a simple behavior control program. Now
let’” s systematically learn about the available input and output items.

As mentioned previously, the Bioloid is made up of Dynamixel units and a CM-5
unit. The input and output items all exist inside these devices. All of these robot
modules are connected to one bus and each of them have their own unique ID.

CM-5
[(N 3 1 ; <\)
() (©)
=] = |4
q b i
[o i
Lowe2] 0

Each Dynamixel units has many input and output items. To access them, each item
is numbered in consecutive order. These numbers are called addresses.

Data is the value of each input and output item. If you look at the behavior control

program created previously (Button and LED). bpg, you can see that the LED is

located in the LED item (Address 24) of the CM-5 (unit with ID = 200). We have

made an “If” statement to see if the data it contains is 8 (the data value for

the @ button). Let’ s review the behavior control program again and look at the
“If" statement with this fact in mind.

Setting the input and output items means specifying the ID and address)

The Bioloid has three units: CM-5, AX-12, and AX-S1. Let take a look at the
available input and output items.

ID Assignment The following are the I0s that are assigned to each unit.

AX-12:1D = 1 ~ 19 (allowed range is 0~30)
AX-S1: 1D = 100 (allowed range is 100~109)
CM-5: ID = 200

27

EIONQID

For the AX-12 and AX-S1, you can set or reset the ID as needed. The AX-12s that
come with the Bioloid already have their IDs set in sequential order, but the AX-
12s that come directly from the factory have their IDs set to 1. If you have a
problem with one of these units and have to order a new one, you have to reset
the IDs accordingly. To reset the ID, refer to the “Management Mode,” in User's
Guide or 3-3. Changing Dynamixel’ s ID in QuickStart and “Help Files\ID
changing .wmv “ video clip.

CM-5 input output items and their addresses

Address| Icon Name Function '"‘:gﬁ’t"“
21 BFLYY fstart robot The motion will start when the page input/ou
|l E motion number is loaded tput
STAETUS - .
- Playing robot . . . S input/ou
25 il E motion During motion play:1, otherwise:0 tput
: Wireless data to . input/ou
26 L"i-f':; be sent Wireless data to be sent tout
= |Received o .
28 = ; Received wireless data input
kr-ﬁf; wireless data
=Y ; Arrival of new wireless data [When
0 | G ggg wireless Ireceived: 1 will change to 0 after the input
FixDl received data is read
—
| Loading 1 will turn it on and loading 0 will |input/ou
31| [[aux teo turn it off tput
] _ The value changes depending on the five .
32 ||| [om-5 button buttons on the CM-5 pressed Input
- When a value is loaded, the value input/ou
33 _,;} Timer decreases by 1 every 0.1 seconds tput
31 f Wireless ID of |The wireless ID of the robot that you want |input/ou
u"’.‘ﬂ another robot |to communicate with tput
.= Wireless ID of my|The wireless ID of my robot [cannot be .
36 I!Jm robot changed input
[—ry
] |, If you load a value here, it will be displayed
37 = | [Print screen on the screen output
= [Change lines If you load a value here, it will be displayed
38 ‘=<al |after printing on the screen and the line on the screen | output
— screen will change

28

EIONQID

You do not have to understand all the items at the beginning. You do not have to
memorize all the address numbers to create a program since most items have
icons and names. You will learn the items of the CM-5 unit one by one as vou
read this manual. You don’ t have to understand all of the items for the AX-St1
and AX-12 units either when you first start learning about Bioloid. Just refer to
the manual when necessary.

AX-S1 Input output Items and thelr addresses

Address Icon Name Function l':TJltJl;JlEt
26 / 1 alue of left side alue for sensing distance of left side Input
_ val f left sid Value f ing dist f left sid

"7 |distance sensor |distance sensor
" \Iglue .Of center Value for sensing distance of center
27 : side distance distance sensor Input
—=1= |sensor
28 I Value of right side |Value for sensing distance of right Input
I distance sensor |side distance sensor
LEFT
. Left side light . . .
29 UJ;I" brightness Value for left side light brightness Input
E] C i
l enter light . .
30 E “‘fv brightness Value for center light brightness Input
RIGHT . . .
; Right side light
31 ﬂfaw brightness Value for right side light brightness Input
Lk : Set if the the value is larger than the
32 — Obstacle sensor standard value [bit-RCL] Input
. Set if the the value is larger than the
33 oy Brightness sensor standard value [bit-RCL] Input
35 @ Sound volume Value for the sensed sound volume Input
36 2 Maximum sound Largest volume sensed so far Inout,
A [value Output
37 L s ? Number of times |Number of times a sound is sensed, Input,
i, Isound is sensed |such as the number of claps Output
1 The time when ; Input,
38 4 sound occurred Time when sound occurred Output
20 J‘ ™ Buzzer scale 0~52 (goes up half a not starting at Input,
:J; "La") Output

29

EIONQID

e meivdl 1S U.T seCUlus diid d
I a1 [Duration of buzzer |maximum of 50 intervals is possible. If Input,
qzj sound it is 255, then a prerecorded sound will] Output
bhao nilauand [(hii722ar onnl N7
I v - Supplied voltage X 10 (12V will be read
42 Supplied voltage as 120] Input
13 CHF linternal The internal temperature of the Inout
temperature Dynamixel (Celsius)
ARTTIVAT UT TTEW " - -
; : If new data arrives the setting will be 1
as | ¥ [frormauon M and if the data Is read the setting will | iUt
= onntrollar cnange to 0
—" |Received remote |The value of received remote
48 Hxi:__ controller data controller data Input
50 - Remote controller |The value of remote controller data to Input,
.1, [data to be sent be sent Output
- |Standard value of |g..meq the standard for the data
52 distance for the : 32 Input
= . |distance sensor setting of address
Standard value of
; Becomes the standard for the data
53 = brightness for the ; Input
=9 ignt sensor setting of address 33
AX-12 input output items and their addresses
. Input,
Address| Icon Name Function output
g Motor torque will engage when set to Input,
24 m Turn on motor 1 Output
Turns on when 1 is loaded and turns Input,
25 | oAb [LED off when 0 is loaded Output
MEARGIN
g . . . Input,
26 .+ |CW Margin Clockwise compliance range
Tl Output
MAFRGIN
27 21 |cow margin Counter clockwise compliance range Input,
=l Output
SLORF Input
28 Fj{; CW Slope CW compliance slope output
o Input
29 i =% |CCW Slope CCW compliance slope outou!
—d 8 utput

30

EIONQID

30 555+ Destination Joint position from 0° to 300° (300° Input,
‘:} position when 1023) Output
o Speed when moving (values from Input
32 [Npiy~ [sneed 0~1023] Output
TORCLUE .
i Set maximum torque [values are Input,
34 =% [Torgue control 0~1023) output
Eﬁ*-..
36 t} current position |Value of current position (0~1023) Input
EPNEE'?!_
38 t} current speed Value of current speed (0~1023) Input
a0 | |Current load Value of external load (0~1023) Input
LR
e 9 Supplied voltage X 10 (12V will be read
el "y .
42 ‘*{f-f;-' Supplied voltage | "/on) Input
13 GiF Internal The internal temperature of the Input
temperature Dynamixel [Celsius)
MOMING |y s .
16 pesiiie Existence of 1 when executing a move command, Input

movement

otherwise 2

31

EIONQID

3. Assembling Simple Robot

3—-1. Connecting the Frames

In this chapter, we are going to learn the basics of robot assembling. Let’ s make
the Robot Arm that has three degrees of freedom. Degree of freedom means the
number of joints. If the robot has many degrees of freedom it can move in many
different ways, however, the robot will also become heavy and slow and will
become hard to operate. The recommended size of a Bioloid robot is as follows.

= Robot weight: No heavier than 2 kg
= Robot height: No higher than 350 mm

F2 The figure below shows how to attach the most basic frame F2 (hinge) to the AX-
12.

F3

.

How to cornect abodv and a body Assembly completed

32

EIONQID

The F3 frame can be connected to three side of the Dynamixel at a 90 dedree
angle. There are a total of four ways to connect the frame and the Dynamixel.
There are other additional ways to construct the frame. Refer to the construction
diagram of the robot for more specific information.

3-2. Wiring and Power

Wiring Wiring is an important part of building the robot. Majority of the problems that
occur with the robot are due to faulty wiring. Severed cable due to insufficient
length, cables getting stuck in between the robot’ s joints are some of the
problems that may occur (latter problem mostly occurs due to users wanting to
assemble robot in uncluttered fashion, wiring the cable in narrow joint’ s space.)
Also, self-made cables are often the cause of problems. Sufficient cables are
provided so try not to use your own self-made cable. Connect the Dynamixels to
the CM-5 unit. As in the figure below, there are four places on the CM-5 unit
where the cables can be connected.

Four wiring locations for CM-5 are illustrated as follows.

ON-OFF| [PC LINK

J 0 J O 7 L
™ R AR el

MANAGE [
T
(n@ . ® PROGRAM

A\
PLAY =7/

Front

\B

As in the figure above, the number 1 and 2 bus connectors are located on the
side of the CM-5 unit and the number 4 bus connector is located on the bottom.

The cables should be connected in a daisy chain configuration, as shown in the
figure below.

EIONQID

Bus Expansion A robot can have legs, a head, and sometimes a tail. Thus sometimes there will be
a need for more 3 line bus connectors on the CM-5. In such cases a bus
expansion board can be used [connector expansion board is not included in the
beginner’ s kit

The figure below shows how the connector expansion board is used in wiring.

Arrangement of Pins
The figure below shows how the pins on a Dynamixel unit are arranged. Two of

the connectors inside the Dynamixel are connected pin to pin. This iS how
connecting in a daisy chain configuration is possible. Pin1 and Pin 2 are where the
wires for the power source are connected. Make sure that the wires are

connected securely.

» PIN1: GND
» PIN2: VDD
» PIN3: Data

P PIN1: GND
P PIN2: VDD
» PIN3: Data

34

EIONQID

Ccrossing gate Let’ s build a simple device as shown below. It is a crossing bar where if you
press @ button, the bar goes up and down when you press @ button.

Wiring |

Check connected direction

We have to keep in mind of three things when we assemble the robots. first of all,
when the actuator is activated, make sure that the cable line is not too short or
does not get stuck between the joints. Second, keep mind of angle when you are
assembling horn for it can be assembled at an interval of 90° ; and when the
horm’ s assembled angle is incorrect, there exist possibility of over-current flow,
affecting joint adversely (for instance, it may burn out the fuse in CM-5). You can
check whether the horn is assembled correctly by taking a closer look at the
groove of both horn and AX-12. Additionally, you have to consider the direction
when you assemble Dynamixel. That is, as Dynamixel is symmetrical, users may
inadvertently assemble robot in a reverse direction. Thus, pay attention to the
direction of horn when you are assembling. For details, refer to the manual (2-2-
1.

150°
(Location value = 512)

3-3. Frequently Used Behavior Control
Routines

Location Unit In order to operate Dynamixel
(AX-12), you have to understand
the underlying principle of angle
unit. The AX-12 can control 300°
by 1024 unit steps. When the

groove of both horn and AX-12 300'300~360° _
(Each value= 1023) o rpidden area (Location value = 0)

35

EIONQID

correspond, the location value will be 512.

Print Screen
Let’ s check the above value. There will be times when you want to find out the
value for input and output while creating behavior control program. In this case,
load the value in “ print screen ” item of CM-5. (Refer to
“Examples\ExamplelJoint position(Crossing Gatell.bpg” inside the CD]

[Label]

1
[Label]l Loop
EDs,..
% [
[Label]
3
e oo ’iiii

[Label]
4

lust like above example, load the current location item onto print screen. As we
need to examine the values in detail, execute the print repeatedly. After
downloading and running above program, bring your hands closer. You will get
the following results.

LOAD

| Stop]

Desired Position Up to now, we experimented with finding the location value of Dynamixel. Now,
let’ s take a look at ways to drive the Dynamixel. If you load the value to
“desired position,” the Dynamixel will move in the direction of its set value. If

you set the value to 512 as shown below, it will move to center position.

| [Label]

2 LoaD J% All Dy... |- a1z
... |-

&ll DynamixeliGoal position

Above example implemented “all Dynamixel.” In this case, instead of assigning

36

EIONQID

values one by one, you can select “all Dynamixels” and assign values to all the
Dynamixels at once. In crossing gate, we use one Dynamixel. However for robots
that use many joints, you can take advantage of “all Dynamixel” Refer to the
QuickStart for crossing gate example program.

3-4. Assembling Robot Arm

Example

Charging

Now that we have learned the basics of building, let’” s go ahead and build a robot
arm. First, refer to the “2-2-8. Robot Arm” of QuickStart and build a robot arm.

isjijis]
= I

[Side view]

ql

= After you are finished building, make sure that the cables that come out from the
CM-5 bus and into the Dynamixels are all connected properly.

After you are finished building the arm, apply power to the CM-5 unit. Plug in the
power jack into the SMPS and turn the power switch on. The blinking of the
Dynamixel’ s LED means that the power has been applied properly.

If the LED does not blink, then check the following.

= Is the CM-5 unit in standby mode? (make sure the mode LED is blinking] If not, it
means that the power was not supplied properly.

= Are the Dynamixels connected properly? Make sure the wiring on the AX-12 units
is done properly. The direction of the three line cables does not matter.

Once the SMPS is connected the robot it can use the outside power source and
also recharge the internal batteries at the same time. Pressing the @ button in
standby mode will start the recharging. Among the status LED’ s of the CM-5 unit,

37

EIONQID

there is one Iabeled Power. This will be ON when running on battery power and will
blink during recharging. When the recharging is almost finished, the blinking will
become faster. When the recharging is done, the blinking will become slow again.
Refer to the “3-2 Charging CM-5" or “Help Files\Charging CM-5. wmv ” video
clip.

Caution Frequent recharging and draining of the battery will reduce the battery life quickly.
This is because of the memory effect and the recharging cycle limit of the battery.
The recommended number of times the battery should be recharged is 300. When
charging, do not disconnect the SMPS until the recharging is completely finished.
Disconnecting the SMPS and plugging it back again often will reduce battery life.
Also, do not charge the batteries without it being inside the CM-5 unit. A
temperature sensor inside the CM-5 measures the temperature of the battery
and determines whether the charging cycle is finished. If you charge the battery
outside the CM-5 unit, there is a danger of over-charging.

Low Battery Sign
The power LED will blink when the robot is low in battery power.

Let’ s create a behavior control program that makes the robot arm do the
following.

= Set the Dynamixel so that it can output 1/4 of its max torque.
= Set the position of all the Dynamixels at their center position.

Torque Limit Address number 34 of the AX-12 decides the torgue limit. The max data value is
1023. In other words, if you load 1023 into address 34 of a AX-12 unit, then it will
move while outputting the maximum torque possible. If you want one fourths of
the max torque, then load 256, which is one fourths of 1023.

@ Only integers can be used when inputting numbers for the CM-5 unit. One fourths
of 1023 is 255.75 but you are not allowed to input this number thus the integer
number 256 should be used instead.

Why would one want to reduce the maximum torque limit? This is because you
could damage the robot if a joint moves to a position over its physically allowed
angle limit of a joint. To prevent this, test the robot with reduced torgue first. If
you are sure that there is no problem with the movement, then you can increase
the torque back to normal.

Now let’ s build a more complicated behavior control program that does the

38

EIONQID

following.

= Set the motor torgues to one fourths of its max value.

= Set the motor speeds to one eighths of its max value.

= If the U button is pressed, move the arm up.

= If the D button is pressed, move the arm down.

= If the L button is pressed, turn the AUX LED off and release the power in the arm.

= If the R button is pressed, turn the AUX LED back on and engage power back to
the arm.

This behavior control program can be represented in the form of a flow chart as
shown below.

v

Torque limit € 256, Speed < 128

i) Move arm up
Button status = “= button?

Move arm down

AUX LED <0, Torque limit €0

o
Button status = \-U;' button?

No <
-
— Ye
Button status="' button?
No <
-
=
No

AUX LED €1, Torque limit €255

A

EIONQID

Comments The flow chart shown above is much more complicated than the behavior control
program that we created before. Thus, to prevent mistakes and to make it more
convenient, you can use comments. A comment does not affect execution of the
program but it is rather a memo for the user.

As in the figure below, you can double-click on the cell labeled “Comment” to
type comments in.

[Camment] |¥ou can input n:-:urnmenij

Comments written here are only for the user. It will not affect the execution of
the program.
The following figure shows the comments for the flow chart from above.

[Gomment] Start

[Comment] Torgue limit<-256, Speed{-128

[Camment] If U button is pushed, raise up arm of robat.

[Gamment] If D button is pushed, lay down arm of robot.

[Gomment] If L button is pushed, fux LED<-0, Tarque limit<-0.

[Gomment] If R buttan is pushed, Sux LED<-1, Tarque limit{-256.

[Gomment] Go to start

[Comment] End

You can slove the problem step by step if you write in the comments line by line
first as shown above. Let’ s now create the behavior control program based on
the comments that we have just typed in.

There is one part of the program that is difficult to accomplish using what we
have learned so far. It is the command that makes the arm move up or down. It
would be easier if we knew the position value of the joints as the arm moves up
or down.

BIOHOID

User s Guide ROBOTIS

Now, let’ s make a program that prints the value of joint of robot arm on screen.
Follow the following steps.

Set the torque limit to 0.
Display the present position of a joint on screen continually.

The following figure shows how this is done. Refer to the
“Examples\Example(Joint position(Robot Arm).bpg)

[Label]

| [
START
[Label] -
’ﬁ_’\" value of joint’ s
torqgue set at 0.

LOAaD

[Label]l Loop

LOAD =8y [0y,

[Label]

Load the value of joints to
print screen item.

LOAD i [210yn...

[Label]

LOAD 5 [310yn..

[Label]

JUMP Loop
changed value on screen

[Label]

4
END

Download the program and run it. Moving the robot arm will output the value for
the joint position. With this program, you can select the appropriate values for
moving the arm up and down.

Stop

910 377 636 -
811 377 636 i
510 377 636
510 377 636
510 377 636
510 377 636
510 377 636
510 377 636
510 376 636
510 377 636
510 377 636
510 377 636
510 377 636
510 377 636

a1

EIONQID

Appropriate joint position values for moving up the arm.
= Value of joint position ID = 1: 512
= Value of joint position ID = 2: 465
= Value of joint position ID = 3: 860

Appropriate joint position values for moving down the arm
= Value of joint position ID = 1: 512
= Value of joint position ID = 2: 815
= Value of joint position ID = 3: 512

Input these values and complete the program. The following figure shows the
source of the finished program. Refer to the “Examples\Example(Robot
Arm).bpg)

st

START
[atw]

104D]ﬁ. mw.l.J 255
Labell)

ERIFIDID

.

| I ..
| @] 18 [~ ~]
T]

UM oop

[Label] Pt hand up

st =
oo [Rg o}]
e (B o]]

RETURN

skt Pt hand down

ksl
LOAD] F:_'J [0 H Ll

(]

LOAD IF:J
lLabal]
RETUAN | |

[Label] Tormun an

i DIk
M.:m,] @mm [

RETUAN | |

DI, H L1+]

[H L

=

8

42

EIONQID

4. Behavior Control Programmer

So far we have made simple behavior control programs and learned how to use
the Behavior Control Programmer. In this chapter we will be learning the functions
of the behavior control program one by one.

4-1. Opening a File

In the menu, select “file” and the following items can be seen. The items here

are very similar to most other PC programs so they won’ t be explained in detail.
New file Open Save

</ Behavior Control Programmer (Bioloid) - [Arm1.bpgl

#{ b'ehay’ar Cop%ol Programmer (Bioloid) - [Armi.bpg]
a5WElEN Edit Program Management Miew Mindow Help o ble Pt Mogram Management View Window Help

N o G [V.3t
Close
g gave Cirl+& j@?
L | SaveAs,,
=] e .
T = - ¥ sweED :
: igi::npzsiﬂégﬂ';ﬂb{ [LabeL;)AD ‘ ‘:tj [4]Dyn....‘ 200 ‘ -
Exit 612 p—
Label] = N 2 LOAD ‘ ‘% B10yn.. :—‘ 200 ‘ -
1 kos.., \ =
,..L.?AD H:b [E]Dyn’\\m\ 4 M.”... (e .. LT T [
Recent file
New This function creates a new behavior control program file. Several program files
can be opened at the same time and copying and pasting between files is
possible.
Open This function opens a previously saved program.
Save This function saves the program that you are working on. When saving for the

first time, you will be asked to name the file. You can also save a file by clicking
on the “save” icon in the toolbar.

Recent File The program keeps a record of the paths to recently opened files. Instead of
searching for a file and then opening it, you can use this function to take a
shortcut.

EIONQID

4-2. Editing Function of the Behavior Control Programmer

Selecting a Sentence
Before copying, moving, or deleting a sentence you have to select a sentence.
You can do this by clicking on the number at the very beginning of the sentence.
To select several sentences at the same time press the SHIFT key and click on
the numbers. The following figures show how this is done.

Step 1: Click on the line number at the beginning of the sentence that you want
to select.

<=T7-Line nu
[Label] Caontinue
4 iHT
LOAD E Print .. t.,.)) [1001D...
[Label]
5
i ‘ ‘ RRIAT: ‘ ’iiii

[Label]

L EFT
LOAD Print i—Gw‘\-J [1oolo
&

[Label]

Print |- ?;‘ [1 001D

[Label]

END

Step 2: While pressing the SHIFT key, click on the Iast command sentence that
needs to be selected. Then all the sentences that come between the two will all
be selected.

a4

EIONQID

Editing menu After selecting a command sentence, go to the menu and click on EDIT to see the
editing menu items. This can also be done by right clicking on the selected
sentences.

i </ Behavior Control Programmer {Bioloid) - [Pri ¢/ Behavior CnnlmIngrammer (Elnlmd) [Programi]

Copy Cirl+C

Pacta

Insert Line Ctrl+ Cut

Delate Line Del o
B Enable/Disable Line Ctrl+E :

[0AD J o= Print |-

Ingert Line
Delete Line
Enable/Disable Line ChivE

Double click!

Cut Cutting a selected sentence will save it and then delete it. This sentence can be
used again elsewhere by using the paste function.

[Label]

1
START
[Label]
e ‘ ’iiii
[Lahe\]
E Double click!

JUMP ‘

Interval that
has been cut

LOAD

[Label]

5
e ‘ ‘ Fentin- ‘ ’iiii

[Label]

Double click!

END

Double click!

Copy When you copy a sentence, it might look like nothing is happening, but actually
the selected sentences are being saved. To use paste function, it can be saved
elsewhere.

Paste After cutting or copying a sentence you can paste it somewhere else. You can

also copy or cut and paste from one program to another. Thus, you can copy
command sentences from previously created programs and reuse them by
pasting them to the program you are currently working on.

45

EIONQID

Insert When vou want to put in another sentence between two sentences you can use
the insert function. Select the number of sentences that you want to insert and
then press “insert.”

[Label] [Label]

START ! e

|[Labell Gontinue [Label] Continue

=

Double click!

Double click!

Dnuhle click! END

i p— FiHT
el [1oolo..
[Label]
i
Fouble elekt e ‘ ponti- ‘ ’iiii

[Insert Instruction in two lines selected state makes two blank linel

Erase Use this function when you want to delete a sentence.

Parameter Input
If you double-click a block for the parameters, the following menu will Show up.

|[Label]
LOAD J CMTS Undefine I
Typing
Dynamixel
n.-.. ki~ ~ L~ -

As in the figure above, you can select between “CM-5,” “Input,” or
“Dynamixel.” If you select “CM-5" the following menu will show up. Here,
select the desired CM-5 item.

W = N =

[Label]

1
STHART .

[Label]

EIONQID

If you select “input” instead of “CM-5" you will be able to input something
via the keyboard instead, as shown in the figure below. Selecting “input” in the
menu means that the program is expecting you to input a constant or a variable.
When inputting a constant, just type in numbers and when inputting a variable,
type in an appropriate variable name. Just remember that for the variable names
the first word has to start with a letter (numbers 0~9 should not be used as the
first character). After typing in and editing the contents, press Enter and the
information will be entered into the parameter block.

| [Label]

LOAD ’J Undefine I
n.-.. Rla mlinbl
[Example of inputting a constant]
|[Labe 1 P
LOAD .
MNanhle = lick! -

[[Example of inputting a constant

When you select “Dynamixel” as an input item, a pop up box will appear and
here you can select the ID and address items.

click!

click!

Set Parameter

D : Address @

|
@ Custorn [D -~ OTurn on/off ~
s
Ab @ All Dynarnixel - LED
v L
SENSOR [100]1Dynamixel “gﬁ.?!" CW margin
o) |
DXL m MaR Gg CCW margin =
YNAamixe SLORE CW Slope
click! L E)
lli'ili [31Dynarmixel P T DP: CCW Slope w

o]

click!

47

EIONQID

Correcting To correct an element of a parameter command after you are done editing, first
left click the sentence that you want to correct and then right click to see the
first menu again to correct it.

| [Label]

LOAD J i Undefine .
T'_,.'|:||ng
[T S P N A)

48

EIONQID

4-3. Syntax of the Behavior Control Program

We have learned several commands for the behavior control program with
several examples. Let’ s now review it systematically.

Command Sentence
The basic unit of @ behavior control program is the command sentence. Each line
tells what the robot should do.

[Labe]

1

[Label] Gontinue

Command
o LEFT
LOAD Frint :—({w_,] [100lo.. i sentence
[Labe]
5 s
LOAD Print|:-[= "¢ [100]D...
[Labe (]
4 GIGHT
LOAD E Print .. [i-lfoe)) [100]D...

Inputting a Sentence
You can create a command sentence by clicking on an empty cell and selecting what
you want from the item list. A sentence is made of a command with an operator, logic
operator, or parameters.

ommand Operator Logic operator
1 1
L abe (] [Comment]
Labe(] ‘Wait Evel [Gomment]
2 IF (@ Butto ‘ = ‘ %) ‘ THEN ‘ LOAD ‘ %AUX LE. 1—‘ 1 ‘ ’i
[abel] 1 [Gomment]
: IF i % Buttol = % 4 THEN LOAD % AU LE. K- 0 I
JUMP WaitEw... I
| abe (] [C: nt]
2 END I
e
Parameters

49

EIONQID

Command There are three types of commands: execution, condition, and branch.

= Condition: IF, ELSE IF, ELSE, CONT IF
= Execution: START, END, LOAD, COMPUTE
= Branch: JUMP, CALL, RETURN

Start, End These are the very basic commands. The behavior control program will consider
everything between the start and the end command as the program that will
actually be used. The command sentences that are above the start command or
below the end command will be ignored. Also, if there are two start commands, or
if start and end does not exist, an error will occur during the rule check routine.

LoAD

[Label]

START

[Label] Gontinue

LOAD

[Label]

LoAD

} Segment that will be actually be
executed.

[Label]

LOAD

% Frint .. [2=|f:

JUMP Gontin..

[Label]

[Labe(]

EMD

IF IF command is a condition decision command. The command statement has the
following format.

IF | Parameter1 | Operator | Parameter2 | Loglc Operator

a0

EIONQID

Parameter1 and Parameter2 are the objects to be compared, and the operator
decides what type of comparing will to be performed. For example, for a sentence

“If Ais larger than B” “A” is paramter1, “B” is parameter2, and “larger” is
the operator.

Let’ s say that there is a traffic signal made of red, orange, and green lights. We
want to make a robot that stops at red, gets ready at orange, and moves at
green. A program using the IF commands would look like the following.

= |F signal = red THEN, robot stops.
= |F signal = orange THEN, robot gets ready.
= |F signal = green THEN, robot moves.

ELSE IF, ELSE
In the program above, the robot has to check all three color conditions. However,
if the signal is red, the robot does not need to check whether the lights are
orange or green. If the signal is orange, the robot does not have to check
whether the lights are red or green. Using the ELSE IF and the ELSE command, we
can simplify the program by eliminating this need for checking all three conditions.

= IF signal = red THEN, robot stops.
= ELSE IF signal = orange THEN, robot gets ready.
= ELSE robot goes.

CONT IF
If you want to change the behavior control program above to implement “If the
signal is red, or if a car is coming, then stop the robot” you can do so using the
CONT IF command. What would happen if we create a program as the following?

= IF, signal = red AND
= ELSE IF, car is coming THEN, stop robot.

The program above tells the robot to stop only when the signal is red and at the
same time if a car is coming. For the command AND, the lines after THEN will be
executed only when both statements are true. In order for the program to work
properly, it has to be changed as the following.

= IF, signal = red OR
= ELSE IF, car is coming THEN, stop robot.

o1

EIONQID

LOAD The command LOAD will load one item onto another. The sentence structure is as
the following.

LOAD | Parameter 1 | Parameter 2

This commands to load parameter 2 into parameter 1. LOAD is an execution
command which is used like “start the robot motion on page 10 or “Set the
Dynamixel destination position to 500.” For these examples, parameter 1 would
be “start motion” or “destination position” and parameter 2 would be “page
10" or “b600.” Also, LOAD is a write command which can be used like “write the
current position of the Dynamixel on the screen,” or “write 20 to variable A.”

In these examples, parameter 1 would be “write on screen” or “variable A”

and parameter 2 would be “current position” or “20”

Compute This command is used when executing an operator. The command sentence has
the structure as the following.

Compute | Parameter1 | Parameter2 | Operator | Parameter3

The format of the compute command would look like “A =B + C.” In this case,

“A” would be parameter 1 and is the answer that will be stored. The objects to
be added are “‘B” and “C” which correspond to parameter 2 and parameter
3. There are many kinds of operators including “+*, “-*, “”, “/ ,and they
can be selected from the menu.

JUmPp This command is used when the execution order of the sentences need to be
changed. The structure of a JUMP command statement looks like the following.

Command | Parameter
For the parameter, you have to put in a label of the sentence that you want the

program to jump to. The name of the label has to be unigue or there will be an
error during the rule check routine.

[Label]l Gontinus Y
5 7 LEFT
F A =) [1DD]D...‘ ‘ > ‘ ‘ 30 ‘)| OR |
[Labe]
P AIGHT
COMT IF (1‘,,'; [1o0lD > a0 » THEN
[Label]
7 po=,. POz,
[Label]
8 =
F (|75 [oolo ‘ > ‘ ‘ 120 ‘)| THEN |
[Labe]
]
JUmMP Contin ‘
[Labof FeactingSide)
n pas=——————— T T

T T I TacHr
Example of jump command

92

EIONQID

Call, Return
Sometimes you will have to execute an identical code of a program several times.
You can make such a code a subroutine and call it whenever you need to
execute it to simplify the program and for convenience. This technigue is used
very often in programming and it becomes especially useful as the program
becomes lengthier.

The CALL command is very similar to the JUMP command, however the difference
is that, for the CALL command, after executing the subroutine the execution will
go back to where the CALL was executed, using the RETURN command. When using
the CALL command, the subroutine should always end with the RETURN command.

raeg . | ommen

=
(-7 ool

[Label]

nnnnn

[Label] ReactineSide
e
b3 ¢ (’r’ﬂ noolp,

[Label]

mmmmmmm

) ‘ THEN

—

nnnnnnnn

o [
ELSEF | ¢flo)) OOID, > fw.l noolp..|)
abe [C:

al
\ RETURN

Example of call command

Rule Check After finishing creating a behavior control program, you always have to check if
there are any errors in the syntax. A program with an error cannot be
downloaded to the robot. You can select the rule check item from the program
menu. Places with an error will be highlighted in red. Fix the errors and then run
rule check again.

et v [
— e |

| Behavior Control Programmer (Bioloid) g] [Label]l Gontinue

LOAD

Print

LEFT
:-‘(‘f‘qu} oo

Y There are incorrect source icon!
& Total 4 errors

il
] GCantin

‘ (‘ Undefine ‘ ‘ Undefine ‘ ‘ Undefine ‘) ‘ Undefir [Label]

[Label]

=7y [oolo.
E D

LOAD

Print

[Label]

ey

LOAD Print .. [\,)) [10010.

Undefine = Undefine

[Label]

il
JUMP

SR ‘ ’iii

Error Line

[Label]

END

a3

EIONQID

When you download a program to the robot, rule check will run automatically.

Enable/Disable Code

When creating a program, sometimes you will have to prevent some parts of the
code from being changed. This can be done with enabling or disabling the code
segments. This function can be very useful in programming and can speed up the
development process. The only parts of the program that are changeable are the
parts between “START” and “END.” One way to prevent a part from changing
is to move it outside of “START” and “STOP,” but this would be a troublesome
process. Instead, you can use the “locking” function to protect the part from
being changed.

o4

EIONQID

i < Behayior Control Programmer (Bioloid) - [Pri vior Control Rrogrammer (Bioloid) - [Programi]

Cut Ctelex
Copy Ctrl+C

Paste Cirl+V/

Insert Line Crl+x
Ctrl+C
Ctri+i/

Double click! }
[I;abe_l]
3
STHRT
LOAD [00Io.. d
[Label] Gontinue 3
5 m— LEFT
LOAD S| Print :—((wﬂ [oolo..
_ | >
[Label]
LOAD Print|-|= [foolo..
FE 53 /
Double click!
|'[Labe'l]
LOAD J =] Print . |: [}m [001D...
‘

[0o0lD..

[oolo..

LOAD = T [)) foolo.)

[Label]

JUMP Caontin...

[Label]

13
EMD
- W
le click!

m}

Portions that will be
ignored

Portion that will be
ignored

Enable / Disable Code

a9

EIONQID

0. Using Sensors

A robot cannot truly be a robot if it simply moves by remote control. A robot has
to be able to move and do things all by itself. The most important thing in making
a robot autonomous is to give it the ability to sense and gather information. For
example, if you want to build a robot that can avoid obstacles, the robot would
first need to have the ability to sense the obstacle.

A device that can sense information is called a sensor. A sensor not only has the
ability to sense objects, but also people or other robots. The process of a robot
sensing outside information and reacting to it via outputting a movement is called
robot interaction.

The interaction between a robot and human is called HRI (Human-Robot
Interaction). Voice and face recognition is also part of HRI. In order to have robots
live with humans, the advanced HRI development is essential

9—1. The AX-31 Sensor Module

Earlier, we have created a program that controls the robot behavior based on the
robot’ s input and output. The output items that we have tested were LED, motor
position, and printing on screen. The input items we have used were mostly using
buttons. In this chapter we will learn more input items using the sensor module
AX-S1.

The figure below shows the AX-S1. The AX-S1 has a distance sensor (3
directions), sound sensor, remote control receiver, and a buzzer.

— 7
Remote control //'!’g'\“":.‘,\\
==
\\”'j!\ii‘\\‘“ &
A ‘ \\
R \

area

[External view of the AX-S1 module: Top view, bottom view]

a6

EIONQID

The AX-S1 has the identical mechanical and electrical universal expansion
structure as the AX-12 which can be connected to other Dynamixel units.

9—-2. Distance Sensing Function

Let’ s create a behavior control program that will print the distance sensor

values on the screen. There are three distance sensors. Let’” s print the value of

each one by one on the screen. Select LOAD for the command, CM-5 screen as

the left parameter, and sensor 1 of the Dynamixel as the right parameter.

The finished program should look like the following. Refer to the
“Examples\Example(Read IR sensor value.bpg” inside the CD.

[Labe]

START

[Label] Continue

LOAD

[Labe(]

LoaD

[Labe]

LOAD

[Labe]

JUMP Contin...

[Labe(]

EMD

A beeping sound will be made when
the AX-S1 is connected to the CM-5

211 92

unit and the power is turned on. When | 511 sz o

you run the program the result will |3 o o

look like the following. a0

Bring your hand closer to the distance | 21! % ¢

sensor area. When the distance |21 %2 o

between the sensor and your hand | e sz o

decreases, the value printed on the |zi1 sz o

screen will increase, up to maximum |3 . -
value of 255.

As the distance increases, the value will decrease down to zero. If the value does

a7

EIONQID

not go down to zero, this means that the lighting in the surrounding area is too
bright or the sensor is sensing the wall or ceiling.

One thing that you have to be careful about is the fact that the sensitivity is
different between white objects and black objects and thus this value can not be
assumed to be the absolute distance to the object.

There are also many other items related to distance sensing. Refer to the AX-S1
manual for more information.

9—3. Sound Sensing Function

The AX-S1 can also sense sound from the surroundings and can count how many
claps it hears. Let’ s create a program that will demonstrate this.

As in the example above, this program will print the noise level of the
surroundings and number of claps onto the screen.

The program will look like the following. Refer to the “Examples\Example(Read
sound and count clapl.opg” inside the CD.

[Label]

1
[Label]l Continue
Print 1—@ [1oolo...

5 —
LOAD gl Pt

LOAD

[Label]

[Label]

JUMP Contin...

[Label]

END

Run the program and try clapping or
making a sound. The output on the
screen will look like the picture on
the left.

There are also many other items
related to sound sensing. Refer to
the AX-S1 manual for more
information.

a8

EIONQID

9—4. Assembling Attacking Duck that Uses Sensor

We are now going to build a very interesting robot. Let’ s make a duck robot that
attacks an object that approaches it.

Attach an AX-S1 unit to the robot arm built in chapter 3 as shown in the figure
below. Refer to the “2-2-11. Attacking Duck” of QuickStart whenever it is
necessary.

Caution While working with the robot never put your face close to the robot.

The behavior control of above can be divided into the following.

= Set the max joint speed to 128 and torque limit to 256.

= Implement arm bending motion.

= Repeat the two functions below.

= If the value of the distance sensor is greater than 30, move joint number 4
towards the sensed direction.

= [f the value of the distance sensor is greater than 120, then straighten the joints
for number 5 and number 6 and then bend them back.

a9

EIONQID

Since it will be difficult to make the two repeating items into a single command, it
will be better to divide it into small parts. Refer to the following flow chart which
labels the complicated parts as @, @, ®, and @.

Torque limit <- 256, Speed <- 128
|

Bend arm

®@

Rotate joint once toward object

Sensed distance > 30?9

No m——

©
®

Sensed distance > 1209 Straighten arm (only joints 2 and 3)

I
Bend arm (only joints 2 and 3)

A

The figure below shows the behavior control program for part 1. If either of the
left or right distance sensors has a value greater than 30, then part 2 will be
executed. To do this, several condition statements need to be used together. This
can be done by connecting the sentences with “OR.” If not, make the robot
remain in its position.

[Label]l Continue [Comment]

5 4 LEFT
F ¢|((=) woo. > 30) oR

[Label]l [Camment]

6 =GHT |
GONT IF ‘ 1 i._.;: [1001C. ‘ ‘ b3 ‘ ‘ an ‘) ‘ THEN ‘ GALL ‘ ‘ Reacti.. ‘ ‘

[Label] [Comment]

7 oz Fos,

60

EIONQID

Next, let’ s go into more detail for part 3. Here, it iS sensing objects straight in
front so only the center sensor value needs to be checked.

[Label] [Comment]

8

F ‘(‘gf " Hoolo

‘ > ‘ ‘ 120 ‘)‘ THEN ‘ CALL ‘ ‘ Reacti ‘ “

We have now completed with the overall structure of the program. But we still
have to finish part 2 and part 4.

Take a look at part 2. There are several ways to make joint 4 rotate towards the
direction of the object. Here, we will be using the following algorithm.

" “If “Left distance sensor value > Right distance sensor value” then move to
position 800. (rotate left until 800)

= If “Right distance sensor value > Left distance sensor value” then move to
position 200. (rotate right until 200)

The rotation limit was set to 800 and 200 to prevent the motor from rotating too
much and damaging the wires. If we create the code for this, it will look like the

following.
[Label] ReactingSide [Comment]
10 4 LEFT M= pos,

IF Ol -»r—E [1oolo. > {_,.‘) foolp...|? THEN LOAD :}a [41Dwn... |- g00

[Label] [Gomment]

1 FIGHT . LeFT o, .

ELSEIF { i‘{.) [1001D. > (k_—,} [oolo... |2 THEM LOAD :’é} [41Dwn... |- 200

[Label] [Comment]

12
RETURN

Finally, we have to finish part 4. The difficult part here is that the arm bending has
to be started after the arm finishes straightening out. The program speed is much
faster than the speed of the actual robot moving, so even before the arm is
finished straightening out the program will set the Dynamixel position value to
where the arm will bend. To prevent this from happening, there is an item in the
Dynamixel called “Existence of movement.” When the Dynamixel is moving, the

“Existence of movement” is set to 1, and 0 when not moving. Therefore, we
need a routine that will make
the program standby until the
value is 0.

“Existence of movement” =1?

After setting the destination
position, implement the code
for the flowchart shown on
the right. The behavior control
program code will look like the following.

61

EIONQID

[Label]l Mavine done [Comment]
= G (2% p 1 v om
Ky Y. =
|S)
[Label] [Comment]
26 o
COMNMT IF 4 l@l [31Dyn... = 1 3 THEM JUMP Movine...
[Label] _ | Bomment]
27
T iiii

The figure below shows the entire program by putting together all the codes
developed so far. Refer to the “Examples\Example(Attacking Duckl.bpg” inside
the CD.

Main routine

[Label] - |[Comment]
! START
[Label] [Camment]
2 roraue
LOAD % All Dy...|:
[Label] : |[Comment] 5
i ‘SPEEQ iiii
LOAD % All Dy... |-
[Label] [Comment]
4
[Labell Cantinue [Comment])
i LEFT
IF (((-v—r{\{’ 10010
[Label] i i [Comment]
& IGHT
CONT IF (ﬁm)) [1001D.. > 30) THEN CALL Reacti..
[Label] |[Comment] :
7 POs,
ELSE LOAD % [410yn... |-
[Label] i) [Camment]
g F—=
IF (= “5 [1ool0.. ? 120)] THEN CALL Reacti..
Lt
[Label] |[Somment]
g

Routine for front-side/left-side reaction to the sensors

[Label] ReactingSide [Camment]
10 LEFT FicHT =N
: I ((L-:ﬁ} [onlo.. b [gﬁ)) [oolo.. |3 THEN LOAD :{3 Mloyn.. |- 200
[Label] ; [Comment]
11 IGHT LEFT oz,
ELSETF (l[;,*)) [001D... > ((m,'] poolo.|d| THEM LOAD %} Mioyn..|-| 200
[Label] [Comment]
12
RETURN
[Label] ReactingFront [Gomment]
13
caLL Lower A ‘
[Label]
14 2
caLL ‘ ‘ Raging, ‘
[Labell

RETURN

62

BIOEGID] User s Guide ROBOTIS

Arm bending/straightening routine to front side reaction

[Labell Stretching arm [Comment]
1 LOAD ‘ % 210 ¢ ‘ 156 ‘ |
... |-
[Label] . [Gomment]
18 POz,
LOAD @ [B10vn... | 512
[Label] Gomment]
19
i ‘ ‘ e ‘ iiiiim
[Label] [Comment]
20
RETURM |
[Labell Folding arm [Comment]
2l LOAD ‘ % 210 ‘ ‘ 466 ‘ |
... |-
[Label] . [Gomment]
B LOAD ‘ ‘% [310, ¥ ‘ a60 ‘ |
by ... | =
[Label] Gomment]
23
. i ‘ ‘ e ‘ iiiiim
[Label] [Comment]
24
RETURM |

Routine that waits until one motion is finished

[Labell Movine dane [Comment]
o (@)
iF e Divn... = ¥ OR
S
[Label] [Comment]
26 ImMONG
CGOMT IF { bé- [310yn = A 3 THEM JUMP Moving.
[Lahe] Gomment]
27
T ﬁi‘ﬁ
[Label] [Gomment]
28
P iiiiim

63

EIONQID

9-0. Surrounding Light Sensing Function

Let’ s create a behavior control program that will print the surround light sensor
values on the screen. There are three light sensors. Let’ s print the value of
each, one by one on the screen. Select LOAD for the command, CM-5 screen as
the left parameter, and sensor 1 of the Dynamixel as the right parameter.

The program will look like the following. Refer to the “Examples\Example(Read
light sensor valuel.bpg” inside the CD.

[Label]

1

[Label]l Loop

LoAD

[Label]

LOoAD

[Label]

LOaD

[Label]

JUMP

[Label]

END

Depending on the brightness of light, it
will take values ranging from 0 to 255. Bl

Because the sunlight is very strong,
the test outdoor may not work. In
indoor, sensor can be very sensitive to
devices that emit strong light,
including flashlight, incandescent lamp
and others.

There are also many other items
related to light sensing. Refer to the
AX-S1 manual for more information.

Ccoooooooooooo)
]
-1
CoOoooooooooooD

64

EIONQID

9—6. Melody Playing Function

AX-S1 can make a sound as there is a buzzer inside. Let’ s make a robot that can
make sound or that exhibit expressions using the melody playing function.

Special Melody Play
Special melody is already built inside and there are 27 melody sounds that can be
played by AX-S1.To play the special melody sound, the “buzzer sound” value
must be set to 255 first.

[Label]l Loop

3 2
oo | |G woon || s | [

Next, input the value between 0 and 26 to produce the sound.

[Label]
4
o | (3Y oo ’ii

If you play other sound before

the previous sound completes,
the previous sound will just
finish. To solve this problem, you
have to wait until the melody
sound completes. For this, check
whether “buzzer sound” is set
to 0.

“Buzzer sound” =0

[Label]l Playing done

5] -
IF @ (0010, i 0)

[Comment]

~—

THEM JUMP P lawin...

65

EIONQID

Now, let’ s make a program that plays the special melody sounds from 0 to 26
and that print the numbers corresponding to the sounds.

The program will look like the following. Refer to the “Examples\Example(Play
special melody sound).opgl.bpg” inside the CD

[Label] [Gomment]

1

[Label] [Comment]
[Label]l Loop [Camment]
[Label] [Gomment]
[Label] [GComment]
S o | T] mews iiii
[Label]l Playine done [Comment]
g IF (|4 [oglc... 1= 1]) THENW JUMP Plavin...
[Label] [Comment]
T compure | | mebs. |-| Meles. ; : iiii
[Label] [GComment]
g IF { Melady... <= 26) THEN JUMP Loop
[Label] [Gomment]
g 0 o
END
Stop I
0007 002 003 004 005 006 100 |
00707 Dynamixels Found. 0 i
1
2
3
4
h
1]
7
2
9
10
1
W |

66

EIONQID

Musical Notes
While working with the robot never put your face close to the robot. Musical
notes consist of “CDEF G A B C” and AX-S1 has a range of three octaves,
consisting of 52 notes. For more details related to musical notes, refer to the AX-
S1 manual.
When you input the numbers ranging from 0 to 253, it will make a sound lasting
“0.1 X “Buzzer sound.” That is, if you input the value of 10, the sound will last
for one second (0.1 X 10 = 1). However, if you input the value of 0, instead of 0
(0.1 X 0 =0), it will last for 0.3 second. If you want to make a sound that continues
forever, input the value of 254; and to stop, input 0.
An example below will play the musical notes “CDEF G A B C” each for one
second and will end it. Refer to “Examples\Example(Play musical notel.bpg”
inside the CD.

L P = h“!ﬂ‘] e
START
Tolmeer - [Bommant]
LOAD Mg |:-|
Dabell - T o = h“!ﬂ‘] o
g GALL Play 1
] B T
LOAD | Mg
L s 14 S = h“!ﬂ‘] e
5 GALL Play 1
Tl [Bommant]
LOAD | Mg
Dabell - T o = h“!ﬂ‘] o
7 CALL Flay 1
] B T
LOAD | Mg
L s 14 S = h“!ﬂ‘] e
g GALL Play 1
Tl [Bommant]
10 LOAD | Mus.
Dabell - T o = h“!ﬂ‘] o
L GALL Play 1
] B T
LOAD | Mg
L s 14 S = h“!ﬂ‘] e
13 CALL Flay 1

Lokl
LOAD ll Musica., [}
Lot
o || -]
st i]
LOAD ll Musica., [}
(]
TR
st]
JUMP

[Comment]

_|[Gomment]

I [

[Latm) Play 1eme
LOAD 29 Dol [: L]

Dstm]
il LOAD l lu HUDJD.|:[Musica..

[Latmi) Playmg done

S ¥ H\J_, nonln..| [=
[Lat=l)
o I| | |

[Label]) Exit program tammerni

| s

- | [

67

EIONQID

9-7. Assembling Intelligent Car that Uses Sensor

We are now going to build a very interesting robot. Let’ s make an intelligent car
that makes a melody sound and that moves in opposite direction when an object
moves towards it.

Refer to the “2-2-9. Obstacle Detection Car” of QuickStart whenever it is
necessary.

Detail behavior controls are as follows.

= If the left sensed distance value is greater than 200, it will make left turn while
making melody sound.

= If the right sensed distance value is greater than 200, it will make right turn while
making melody sound.

= [f the center sensed distance value is greater than 200, it will go backward while
making melody sound.

= If there are no changes, the car will stop.

= The melody will be special melody play and upon call will generate sound only
once.

As the behavior control of above robot involves complex behavior, it is
recommended that you use function.

68

EIO0ID
(start)

»
Ll
Y

@

Left turn while making
melody sound

Left sensed distance
>2009

@

Right turn while making
melody sound

Right sensed distance
>2009

Move back while
making melody sound

Center sensed distance
>2009

Wheel end

A

@

Move while making melody .
Sound special melody, move

Melody completion, on standby

Wait for substance to disappe

69

EIONQID

AX-12 Continuous Turn Mode

To use the wheel motor of AX-12, it is required to set the “continuous turn

mode” rather than the “joint mode.” For more details on the “continuous turn

mode,” refer to the AX-12 manual.

Among the items of AX-12, if you set the “CCW angle limit” 0, it will be set as
“continuous turn mode,” and it will be set to “joint mode” if you input values

other than the 0. If you look closely however, you will notice that there is no
“CCW angle limit” item. For items not available, use “Custom ID” item to

directly control the behavior. In this case, to use “continuous turn mode,” you

have to select “Custom ID.”

Set Parameter @

D: Address
1 [
‘?,g;roustom ~
@ whamixel
HEY

5]
FEMZOR [100]Dynamixel
:-rl'v.'k--'
DXL [1]1Dvnamixel
[4

DXL [21Dynamixel
f

I]XI:\ [F10vnamixel w

614 | Cance|

Here, you input the value 254, the value representing all Dynamixel in “ID” and

for “address,” input the value of 8, the designated value for “CCW Angle

Limit.” If you want to select specified ID of Dynamixel, input the applicable value in
“ID_”

Input the value of 0 for wheel mode for the AX-12 parameter. Refer to
“Examples\Example(Change endless turn model.bpg” inside the CD.

[Label]

2

70

EIONQID

If you want to change back the AX-12 to “joint mode,” input the value of 1023.
Refer to “Examples\Example(Change joint model.bpg” inside the CD.

[Label]

?7023

LOAD 254:8 o

Be aware as once you set the AX-12 mode, it will be in a set mode until you
change it directly. Thus, if you try to control the AX-13 by the “continuous turn
mode” when it is set as the “joint mode,” it will not work properly, and vice
versa.

AX-12 Continuous Turn Mode Control
When the AX-12 is in “continuous turn mode,” it will be controlled in the
“motion speed,” not “desired position.” If you input the value from 0 to 1023
in “motion speed,” AX-12 will rotate clockwise. Of course, the value of 0 will
make the AX-12 stationary. However, if you put the value above 1024, it will
rotate counter-clockwise corresponding to the inputted value. For example, if
you input 600, it will rotate clockwise corresponding to the speed of 600,
whereas, if you input 1624, it will rotate counter-clockwise, once again at the
speed of 600(600+1024).

[8 2A]

[Label]

LOoAD [110wn.. |- G00

9 2x]

[Label]

LoAaD 1624

=)
o
ef
[=]
=
—_
0
=
>
1

A

EIONQID

For the intelligent car example here, AX-12 will be set to the “continuous turn
mode.” To do so, refer to “Examples\Example(Change endless turn model.opg”
inside the CD. Next will be the intelligent car behavior control program. For that,

refer to “Examples\Example(intelligent Carl.bpg” inside the CD.
Main routine
sl el
........ o
2 LEFT
IF { ((u-!ﬂ [oolo. 3 200 bl THEN CALL Respon...
[Label] ' ' : - |Comment]
3 3IGHT
ELSEIF 4 {L._,:.)) [oolo. > 200 b THEN CALL Fespon...
[Label] [Comment]
4 =
ELSEIF { = 3 [oolo ‘ > ‘ ‘ 200 ‘) ‘ THEM CALL ‘ ‘ Respon ‘ ‘
[Label] . [Comment]
2 ELSE ‘ ‘ CALL ‘ ‘ Stop ‘
[Label] [Comment]
8 JUMP ‘ ‘ Loop ‘

Routine for left, right and center reaction to the sensors

[Label] Response left [Comment]
7
CALL Turn r... ‘
[Labell [Comment]
g
CALL Play m...
[Label] Watch left [Camment]
q LEFT
IF { ([-;—n} [1oolo.. > 100 3 THEMN JURMP Watch ..
[Label [Camment]

RETURM

[Label] Response right

[Camment]

11
CP'LL Turn I ‘ iiii
[Labell [Comment]
12
CALL Play m...
[Label] Watch risht [Gamment]
13 SIGHT
: IF (E@D 0010 > 100) THEN Jump Watch ..
[Label [Camment]

RETURM

[Label] Response front

[Camment]

15
CP'LL GD bac“ ‘ iiii
[Labell [Comment]
18
CALL Play m...
[Label] Watch front [Comment]
AT =
IF { E? [1oo]c.. > 100 3 THEM JUMP Watch ..
i
[Labell [Comment]

18
RETURM

72

EIONQID

Move routine

[Stop] [Backward]
[Label] Stop [Labell Go backward
o LOAD % [110yn... |- 0 - LOAD % [110yn... |- 400
[Label] [Label]
a0 LOAD ;ﬁg [21oyn... |- 0 % LOAD % [210yn... |- 1424
[Label] [Label]
o LOAD % [B10yn... |- 0 = LOAD % [310yn... |- 400
[Label] [Label]
& LOAD S [410vn. |- i 2 LOAD % [410yn... |- 1424
[Label] [Label]
1 ReTURN ’iiii 1 ReTURN ’iiii
[Left turn] [Right turn]
[Label] Turn left [Label] Turn right
- LOAD g [10wr... |- 1424 - LOAD g [110yn... |- 400
[Labell [Label]
i LOAD s 210yn... |- 1424 b LOAD %;D 2Ioyn... |- 400
[Label] [Label]
% LOAD % [B10yn... |- 1424 & LOAD g [310vn... |- 400
[l ahel] [Label]
o LOAD g [410ym... == 1424 - LOAD %;D W1Dyn...| = 400
Balet [Label]
RETURN

Melody sound routine

[Label] Play melady [Gomment]
39
LOAD ‘ ‘@ {0010, H 255 ‘
[Label] [Comment]
40
LOAD [oolo.. |- 4
[Label]l Playine done [GComment]
41 -
IF ‘ 4 ‘@ [1oo]o. ‘ > ‘ ‘ 1) ‘)] ‘ THEN ‘ JUMP ‘ ‘ Playin... ‘
[Label] [Gomment]

42
RETURN

[Label] [Comment]

43
EMD

73

EIONQID

6. Motion Editor

There are two ways to edit the motion. One is to use the motion editor and the
other way is to execute the program mode using the robot terminal. The motion
editor has a graphical user interface so it is easy for beginners to use. The robot
terminal uses text mode, so it lets users see all information all at once, thus more
useful to advanced users.

For this chapter, we will take a look at the example of simple two-legged walking
Droid. Refer to the “2-2-14 Walking Droid,” of the QuickStart and make the
hardware part in advance.

74

EIONQID

6-1. Using the Motion Editor

Motion Editor

Start(3)

The motion editor has a graphical user interface that allows the user to edit a
multi-jointed robot made up of Dynamixels. A user can create and edit motions by
moving the joints by hand and saving each pose using the motion editor. The user
can also connect or repeat edited motions.

The following screen will show up when you run the motion editor.

Page information

*» Motion Editor(Bioloid)

Setup(l) HelptH)

Pose task windq

Task informatiomm,

area

> < MNare,
o [1] el
o] ramixe|
B IDyramixel
[41Dymamixe!

Page Forwartgglk
Pag@number 2

ta address 0xD000ES
fFlay count
Number of pose 7
Mation speed

ccel time 4

EEEY |

xt page No_
xri\gage No. o

My Mation

e Number - |2 Page Play ‘
Page Save

Jomt information window

Gommand 3> |

| Speed

Pause Speed Pause Speed

30 5 40 o 40 0 25

connection

Robot Profile

Saved posed window

In order to use the motion editor, the robot has to be connected to a PC in
standby mode. If the connection fails, go to the start menu and set the “Com
port” correctly and check if the “Com port” is in use or not.

If you cannot see above screen when the motion editor is running and there is no
problem with the connection, it means that the robot profile is not set properly.
The robot profile is a file that contains the information of the robot composition
elements that defines how many joints it has, the name of them, and the ID
number assigned to them. This information will be different for robot to robot,
thus a different robot profile is needed for a different robot. The robot profile

75

EIONQID

information file will be used by the behavior control programmer and in the
motion editor.

The file extension for the robot profile is -.rbt
Below screen is, after the program is installed, when the motion editor is
executed and is applied to the default robot profile (default.rbt).

*w Motion Edior{Biolold)
Stan(3) Setplll) Help()

05 [8]0yramie!
7 [71Dyranie! MR
8 [B]Dyramiel A
8 [B]Dyrambed WA

10 [olDyremie! A Ry Al M
11 [11]0ymambal A

12 [12]oyrambel WA Fage Sive
13 N3lCyramial A

14 (4]0

19 ey

“Speed | Pouse | Speed | Pouse | Speed | Pouse | Speed | Pausel | Speed | Pause | Speed | Pause | Speed | Pause
20 0 G4 o (1} o 64 1] o G4 G4 0

[Part where robot profile is used in the motion editor]
Robot Profile Change
If a specific robot information file has not been selected after installing the
program, then the robot profile file called default.rbt will be selected by default.
Default.rbt contains the information for 1 AX-S1 and 18 AX-12s, and the names of

the joints are set as Dynamixel [ID]. Let’ s change this so we can use it on a
"walking Droid.rbt.” with 4 joints.

In the setup menu select “change robot file” and click on “walking Droid.rbt.”
One thing to keep in mind is that the changed robot information will be applied
starting with the next program run. In the behavior control programmer, “Change
Robot File” can be found under the menu “program.”

% Motion Edit <! Behavior Control Programmer (Bioloid)

Start(3) BEE (L1 ___' | =g MManagement Eiew_ Help

ha lobot file

Offset configuration (0 Dowmioaclay - Cultd

Re-setup of robot profile

76

EIONQID

After selecting the “Walking Droid.rbt.” the robot profile information will look
like the following.

“ Mation f
Msu Seup(ll) ueuuu

FIor <hame >
| []oyramel
o2 [2]Dymamis|
@ [3lDyramiel
04 [AIDyramie

Formard mal,
2

:0000E400

1

-4
LS
H U
H
H

SRERE

7
Iz
40

Cammand 3

l"—

I5|---| IP-— ISnd Iv-m |‘v-ﬂ Ivm- Is»-a [Pauen 15;—« | Pausa Is.--d | Paizn |s,..4 Fau
El) 4 an 25 o

[Walking Droid. rbt. executed in the motion

Set Parameter |X|

Address :

. Sound data max hold |

2

sy Sound detected count

I@.Swnd detected time
= ”Buzzer e

Pt Buzzer time

DXL [4]Dynamixel

5% -

|

|
Gancel

[Walking Droid. rbt. executed in the Behavior Control Programmer]

On the motion editor screen, the big picture on the left is the pose work area,
and it shows the current state of the robot. Here, you create a motion by

Pose The pose is an instance of a motion.
For example, in the figure right, you
will need many poses to make the
robot move one side step.

Creating a Pose

77

EIONQID

setting the desired pose and dragging it to the saved pose area. Connecting
the poses in the saved pose area smoothly creates a motion.

The numbers and poses that are shown on a motion editor screen are the
information for a single motion page. A motion page is made up of 7 poses and
64 bytes of page information. The Bioloid has up to 127 motion pages.

. The Bioloid’ s motion memory = 127 motion pages

. 1 motion page = 7 poses + page information (64 bytes)

. 1 pose = Maximum 30 joints information (position, velocity, and stop
time)

The behavior control program plays the motion using its page number.

The numbers in the joint information window are the position values of the robot
joints. The robot inside the pose task window is the picture of the actual
current robot. Therefore the joint position values shown inside the joint
information window is the actual current joint position of the robot.

Inside the joint information window there is a button turning ON or OFF the torgue

of the joints.

o> < Mame > <Joirt>

01 [IDvramixel sl

02 [Z1Dyramixel [

6 [BIDyvramixel ersd

4 [4]Dyramixel [

05 ElDvramiel A

06 [B]Dyramixe| A

07 [F1Dyramixel A

08 [BIDyramixel NAA

08 [E0vramiel M

10 [10]Dyrarmixel A

11 {1]Dyramixel AR

12 [12]Dyramixel AR

13 [13]0vramixel MAA

14 [14]Dyramixel MAA

15 [15]Dyramixel AR

16 [16]Dyramiel AR

17 [17]0yrarel wa 00 |

18 [181Dvramisel /A off

19 [19]Dyramixel AR 4
Off This will turn off the torque of the selected joint. After pressing the OFF button

you can move the joints by hand.

on After moving the joint to the desired position, press the ON button to see the joint
angle value on the joint information window. The torque will be back on, locking
its joint position.

18

EIONQID

You can select several joints at the same time for this operation. Hold the Gtrl
key and select the joints that you want to turn ON or OFF as once.

Shown below is a summary of the process for creating a motion.

Uolnt OFF > Create the desired pose -> Joint On > Add pose|

Pose Speed Even if the joint values have been set properly, you still might not be able to get
the desired motion unless you set the speed between poses correctly. On the
bottom of the screen, there is a place where you can set the pose speed.

Spot Time Sometimes you will want to stop while moving from one pose to another. If you
give the robot a stop time, it will stop moving for 7.8 msec per this value and then
play the next pose.

Add Pose If you press the “Add Pose” button in the task information area, the joint
values in the pose task window will be added to the saved pose window. Let’ s
create some more poses using the ON, OFF commands.

Play Now let’ s connect the inputted poses to create a motion. If you press the play
button the motion will be played using the poses saved in the saved pose window.
This function is useful when you want to test the motion that is currently being
created. If you press the play button and the motion is executed, the button will
changed to stop. If you press the stop button, the motion that is currently running
will stop. Also, if you input the page number, motion that has been saved in that
page will be activated.

Flay Motion

Fage Mumber : |1 Fage Plav

Editing the Pose
If you want to execute the pose that has been saved in the save pose window,
double-click the applicable pose. Take note however that to prevent robot from
breaking down due to execution of invalid pose, the program will request for the
confirmation. By checking the color of robot as shown below, you can tell which
poses are valid. For invalid poses, it is indicated by the color black. For more
details, refer to a next page when it covers the valid pose number.

79

BIOEGID] User s Guide ROBOTIS

Pose &

Valid poses Invalid poses

Pose Save
Addition of pose always goes in the end of pose save window. If you want to put
the pose in particular place, however, you can drag and drop as shown below.
Take note however that the previous pose will be overwritten.

% Motion Editor{Bioloid)
Start(3) Setup(l) Help(H}

D> < MNare > <Joint> Page name Forward walk

O [1Dyramixsl 7227 Page number 2

02 [21Dyrarmizel e Data address

03 [3IDyramixel bee) Play count 1

04 [41Dyramixl o Number of pose 7
Motion speed 32
Accel time 40
Next page No_ [
Exit page Mo.]

~Play Mation

Page Humber : 2 Page Play

Meszags -

S E PG |n =
- Drag & Drop

[Speed | Pause | Speed | Pause | Speed | Pause | Speed | Pause | Speed | Pause
30 5 40 0 40 0 25 5 40

Speed Pause | Speed Pause
[] 40 [25 [

Pose Move and Insertion
As you can see from the pictures shown below, you can move the pose by
dragging to applicable place. Also, if you want to insert the pose, just move it
between appropriate poses.
This function is also possible when you want to move pose from the pose window.

I] '- ‘

Pose move Pose insert

80

EIONQID

Delete Right click the pose to be removed and select delete.

“.“ Mirror pzs; -
“l.. Delete pose .
wiks

The following is @ summary of the above.

= The key to motion editing is posing editing and saving.

= A pose is created using the ON, OFF button and actually moving the robot joint by
hand. Also, you have to set the pose speed and stop time.

= You can move to change order or insert a pose by dragging a pose with your
mouse.

= The motion can be verified by playing it by pressing the Play button.

During editing, the motion data is stored inside the CM-5" s RAM. When you are
finished creating the motion, use the save command to save the motion page to
the flash memory.

Save Page

Page Information
You can find the page information on the upper right corner of the screen. To
edit the page information double—clicks the area you want to edit and type in the

Page Name

Page Number

value.

Page name Init

Page number 1
Data address 0x0000E200
Play count 1
Mumber of poze 1
Motion speed 32
fccel time 32
Mext page Mo. 0
Exit page MHo. 0

You can give a name to each page. The page name is empty as default. If you give
a name for each page it will be convenient for later use.

This is the unique number (1~127] of each page. If you change the number, it is
possible to move to applicable page.

81

EIONQID

Start Address This is the location of the code memory of the page that you are currently

Play Count

working on. You do not have to be concerned about this information.

This item tells how many times the motion will be played. The default value is 1.

Number of Poses

Motion Speed

When you play the motion, the poses from 0 to the valid number of poses will be
played. Inside the saved pose window, the poses that are not valid are in black
color. Sometimes you will need to change the number of valid poses during
editing, for example, if you want to play the first few poses instead of the whole
thing.

Use this when you want to adjust the play speed of the whole page. The default
value is 32. Setting the value to 64 would be the same as doubling the speed of
each of the poses individually.

Acceleration Time

Next Page No.

Final Page No.

Every time a motion is played, the joints go through a process of acceleration
constant velocity deceleration. The acceleration time is the time of acceleration
and deceleration (ramp up time plus ramp down time). Reducing the acceleration
time will make the motors acceleration faster and stress on the joints. Increasing
the acceleration time might create an interval which makes it impossible to
complete a motion.

You can set the next motion page to be executed after the current page is
finished being played. This can be done by indicating the page to be played next
in the “next page No.” If you don’ t need to play another motion page then set
the value to 0 (default value is 0). If you set “Next Page No.” as the number of
the current page, then playback will continue infinitely in a loop. In this case, you
can press the ESC key to stop the playback. Playback will be stopped after the
current page motion is completed.

During motion play, if a signal (such as from a remote controller) is received, the
playback will end after the executing the final page defined by this. If this feature
is not needed, then set its value to 0. To use the “motion stop” command in
behavior control program, load 0 in CM-5 “robot motion” item.

Motion Data Download

To download created robot motion to PC, use the “manage” menu of behavior
control programmer.

82

EIONQID

Motion data filename extension is mtn and to download, select “manage”
from the behavior control program menu and choose ‘motion data download.”
Here, open “Examples\Example(Walking Droid).mtn in the CD and download it. To
download the motion, follow the following steps. Also, refer to the “2-1-2. Robot
Program Download” of the manual.

File Prograrmn BEEGEEEGEDS Yiew Help
uinl e

File name : Mo file

Baobot Mation

Progress : 0%

Part name : i - Disconnect GM-5

After download is completed, click close to finish the program.

Motion Data Upload
If you created the motion with the motion editor and saved the motion, there is a
chance of data loss as modified motion data is inside the robot. To save in more
secure fashion, it is necessary to the save motion data in PC. The motion data
upload is used in such case.

B euh o el
File Program BEEGEECEGEGS Yiew Help
2 | Update CM-5 . Read from Robot irite to Robot

Undate b
Bobaot MMation

File name : Mo file

Progress : 0%

Part name : i - Disconnect GM-5

As the motion data upload is more complicated than the download, keep attention
of the following.

= Click “Write to Robot” and input the file name.

= When “Start” button of CM-5 is clicked, the motion data upload will begin.

= When upload is completed, close the motion data dialogue box and click the
“Mode” button of CM-5.

83

EIONQID

6-2. Motion Editing Using the Robot Terminal

Once you get familiar with the robot you will want to edit motion in the text
interface instead of the graphic user interface - being able to see all the
information at once can be helpful. In this chapter we will learn how to edit
motion using the robot terminal program.

Robot Terminal The Robot Terminal is a program that connects the CM-5 and the PC. The CM-5
does not have a screen or a keyboard, but the Robot Terminal program will allow
you to input and output information using your the PC. The information outputted
from the CM-5 will go to the PC through the serial cable and then printed on
screen through the Robot Terminal. Also, information inputted in the Robot
Terminal via the keyboard will be sent to the CM-5 through the serial cable.

ek 1 S PageHunber 001
(BN)[====] === ==== =s=s sess ssss sses sses WS AUAr : UOURED
Hm) -

A i) -~
SCMmNS) ===~
B Mu6)
Timx07)

UELP,H, B, Copy , Save

UHSU, BFF , Hew, 5P

-—- w85inc,Dec:][H
a5

s
[

[@00] 080 @00 @08 @08 080 G0 @00
[O00] D64 BO% DED UGN O64 D6 ©ER [XIO0,¥:I00,A0S12]
FUSES POSO FOST POSZ POSY POSH POSS POSA Go Step:

Latest file => Tx: ExeWEensoeModule hox COM2-5T600

1 1

1 1

1 1
Kevboard Screen

Setting the Comport
After running the Robot Terminal program, if the connection fails, go to the setup

menu and select Connect to set up the Com port, as shown in the figure below.
Set it to the appropriate Com port and set the communication speed to 57600
bps. You only have to set the Com port once since this information will be saved
inside the program.

84

BIOHOID

User s Guide ROBOTIS

M Bobot Terminal v0.92

Port : COMI1 -
Modify colar Ctrl+ Baudrate: {57600 ~| bps

v &dd bytesum

Exit Ctr]+ Connect | Cancel |

Apply power to the CM-5 and run the program mode. To do this, go into program
mode by pressing the MODE button and then press the START button. The following
screen should appear.

I Hobot Terminal v0.92

ffffffffffffffffffffffff PageNumber : 8681
B85 Addr: BAABE2 00
B85 (Reserued) =888
[i:13 PlayCount: 881
885 (Reserved) :0800
885 (Reserved) :800
BBLS (Reserved) :-888
B85 (Reserued) =888
885 Page Step:608
885 ControlCode:008
085 Page Speed:632
B85 DXL Setup:888
885 Accel Time:832
B885Link to Hext:688
885Link to Exit:880
BBS (ReservedP1) :080
B85 (ReservedR1) 888
B85 (ReservedP2) - 9080
B85 (ReservedR2) - 000
::1

17ex[----]1
188z [—-—-]IF

[i:13
885G,4,I,D,H,Set
085P ,N,B,Copy,Save
BB50n,0FF ,New,SP
B85Inc,Dec:][,}H{

" 608 0688 B0 @80 668 688 680
[#86] B64 864 B64 B64 B64 B64 B64 [X:-688,Y:08,A:08512]
PYSE? {ESB POS1 POS2 POS3 POSH POS5 Pﬂfj Go Step:

‘ ~
Latest file => Tx: ExeWhiolbid hex COnd-57600

1 |
The position of the currently connected 7 poses

Dynamixel ID

The first column on the left is the ID of the Dynamixel. The robot profile

85

EIONQID

information is not shown here. The next column (which we call POSE 7) shows the
values of the current angle positions of the Dynamixel units. By the numbers in
POSE7 you can see that only one Dynamixel of an ID 1 is connected.

The figure above shows the screen for editing a single motion page. A motion
page is made of 7 poses and 64 bytes of page information. The size of one page

Pose

Command

off

on

is 512 bytes.

The pose is an instance of a motion. For
example, in the figure below, you will
need many poses to make the robot
move one side step. A motion connects
these poses smoothly.

The following commands are available.

Commands related to creating poses: ON, OFF, WRITE, SET, STEP, PLAY, GO, INSERT,

MOVE, NAME, SAVE

Commands related to editing pages: PAGE, BEFORE, NEXT, COPY, NEW

A multi-jointed robot motion can be edited using these commands. Let’ s take a

look at each one.

This will turn off the torque of the joint.
If you input OFF, the joint angle value
for POSE7 will disappear (see figure on
the right). You can now move this joint
by hand.

After moving the joint to the desired
position, type the ON command to see
the joint angle value at POSE7. The
torque will be back on, locking its joint
position.

You can list several Dynamixel IDs after
an OFF, ON command to turn them on or
off all at once.

B Bobot Terminal v0.92

Setup Files
a{0x008 =]|-—— ———- -
1(ﬂxﬂ ________ -

2(0x02) [z —1|--—- ———- -

FOx87)[4-—-]1|-——— ---- 5
g(ox@8)[{-—1|-——~ ——- =
o(xB8)[1-—11-—- ——- =
Dynamixel 18{@xBA)[f——]|-——- -———— =
Dynamixel 11({@=x0B)[[-——]|-——— ———- =
Dynamixel 12{@x8C)[[---]|-—— ---- =
nunamixel 137 ARADA-———T11-——= ———= -

Torque Off state with OFF instruction

86

EIONQID

Write After setting the joint angles to the desired positions, type in the WRITE command.
The joint angle values of the POSE7 will be added to the pose. Let’ S make several
more poses this way.

............................ S Pagetinber: 0001 nand e S agehinber 0801

8RS Addr: l!ll”ll . nand e i B i POSE Ioading .:r l!ll”?l "

| &

Y- o nanduel 2¢#AE)[-—-—-] -
el 23814
Y- e ounanduel 23¢@cA7[----] --—-

nanixel ﬂ-u.‘ni

o
run llo lu ul nl lu ln nn

i -
run g lu ul nl lu ln nn

After executing the ON command After executing the WRITE command
Play We will now check the motion that
connects the inputted poses. If N S e R < gt
you type in “play,” the motion -
will be played. The poses from -
POSO to the last inputted pose will it
be played. You can see where the 1 e
last inputted pose is by the Step e == e
line. S Rt £t
mP You can play another motion page =j===:
by typing in ‘Play [page AR (1 D
numberl” For example, “Play 3" .
will play the motion of page [Plavmg from Pose 0 to Pose 3]
number 3.
Go After playing a motion, sometimes you will want to edit it. Here, you can use the

“go” command. This command will take you to a certain pose. For example, “do
1" will make the robot move to the configuration of pose1 and the joint angle
values of POSE1 will be copied into POSE7. The Dynamixels will move at a constant
speed.

Write [pose number]
After using the GO command and edit the pose data using the OFF, ON commands,
you will want to save the new joint values of POSE7. This can be done by typing in

87

EIONQID

“Write [pose numberl.” And the joint values for POSE7 will be saved in the
specified “pose number.

Insert While editing, you will sometimes want to place the current pose (POSE7) between
two other poses. To do this, use the “insert” command. The format is “insert
[pose numberl.”

Delete A pose can be deleted using the “delete” command. Typing in “delete”
without a parameter will move the step line up one column. If you want to delete
a certain pose then type in “Delete [number].”

Step Sometimes during motion editing you will want to change the location of the Step
line. For example, say that you made 4 poses but you want to run only the first
two. Typing in “step 2" will move the step line to the beginning of pose 2 and
only POSEO and POSE1 will be played.

Name With this function you can give a name to a page. This will be useful later.
Save During editing, the motion data is stored inside the CM-5 s RAM. When you are

finished creating the motion, use the save command to save the motion page to
the flash memory.

Page Type in “page [page number]” to jump to another page.

Before Moves to previous page.

Next Moves to the next page.

Make sure to save the motion data before moving to another page since it will be

deleted if not saved.

Copy To copy the data of a certain page onto the current page, type in “Copy [page
numberl” The copied data is not saved in the flash memory yet.

New This command will erase all the information inputted on the current page.
Next we will be learning about editing the page information. The page information
is located on the upper right corner of the screen. The following are names of

the items and are not commands. They can be edited using the “Set” command.

Speed Even though the joint values have been inputted properly, you might still not be

88

EIONQID

PauseTime

Accel. Time

able to get the desired motion unless you set the speed between poses correctly.
You can do this by setting the value of the speed at the bottom of the screen.
The following shows how this is done.

Move the cursor to the item that you want to set.

Pressthe “I” or “[“key to increase or decrease the value of the item.
Press the “{ “or “} key to change the magnitude.

By typing in “Set [valuel” the value can be set at once.

The method above can be used to set not only the speed but also all the other
items below.

M Robot Terminal v0.92

Setup Files
Dynamixel B(8x@8)[----] -———|-———— ——-— ——-= ———— ———— ———— 085 -~
Dynamixel 1(0x01)[0134] 6134 PageHumber : 80681
Dynamixel 2{Bx02)[0368] B368| Zgpils
Dynamixel 3{Ox03)[--——] ———-|
Dynamixel 4{BxB84)[--—-] |
Dynamixel 5{@x85)[--—-] |
Dynamixel 6(BxB6)[---—-] |
DPynamixkel 7{Ox07)[--——] |
Dynamixel 8(Bx08)[----] |
DPynamixel 9{8x09)[--—-] |
Dynamixel 168{0x0A)[----] |
DPynamixel 11{8x0B)[--—-] |
Dynamixel 12{@x0C)[--—] |
Dynamixel 13{0x0D)[---—-] |
Dynamixel 14{0x0E)[--—] |
Dynamixel 15({BxBF)[----] |
Dynamixel 16{0x18)[--—] ————|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |

B D
eserved) B
PlayCount:@d

7 (Reserved) :000
85 (Reserved) :088
8 (Reserved) :0888
BF (Reserved) :088
Page Step:

Page information

Accel Time:
885Link to Hext:008
885Link to Exit:088
885 (ReservedP1): 008
B85 {ReservedR1): 008
885 (ReservedP2): 008
ABS{ReseruvedR2): 0808
[il:1

685

[il:1

685

885G ,W,1,D,HM,Set

Dynamixel 17({Bx11)[--——
DPynamixel 18{8x12)[--—-
Dynamixel 19(Bx13)[---——
DPynamixel 28{8x14)[--—-
Dynamixel 21(0x15)[-———
Dynamixel 22{0x16)[--——
Dynamixel 23{(0x17)[--———
Dynamixel 24(Bx18)[---——

Dynamixel 25(0x19)[--—-] -———|-——— ———= ——-= ———— ———= ———— 085P ,N,B,Copy ,Save
Dynamixel 26{Bx1a)[---—-] -———|-—-= ——== ——== ———= ———— ———— B8850n,0fFf ,Hew,SP
Dynamixel 27(0x1b)[----] ---—]|---= ——-= —=== ——-— ———— ———— 8851Inc,Dec:][.34
Dynamixel 28{Bx1c)[---—-] -———|-——= ———= ——== ———= ———— ———— a8s
Dynamixel 29{Bx1d)[----] ---—|---— ——-= —=== ——-— ———— ———— 085
Dynamixel 30(0x1e) [-] oo —————— 885

PauseTime 800] ©O06 080 000 QOO 008 068 B0

Speed 680 064 064 064 064 064 -80,Y:080,A:0512]

POSE? PO 0S54 POSH Go Step:
Jw
Pause time and Speed by poses -

Latest file => Rx: Wark¥packet bin COr2-57600

Sometimes you will want to pause for a short time after a pose. For example, you
might want the robot to pause for a while after it has finished doing a bowing
motion. If you give it a “pause time” value, it will pause for 7.8 msec per the set
value and then move on to the next pose. The figure above shows an example of
the robot pausing for 0.5 s (40-7.8 msec) after POSE1 is played.

Every time a motion is played, the joints go through a process of acceleration
constant velocity deceleration. The acceleration time is the time of
acceleration and deceleration (ramp up time plus ramp down time). Reducing the

89

EIONQID

acceleration time will make the motors acceleration faster and stress on the
joints. Increasing the acceleration time might create an interval which makes it
impossible to complete a motion.

Page Speed Use this when you want to adjust the play speed of the whole page. The default
value is 32. Setting the value to 64 would be the same as doubling the speed of
each of the poses individually.

Link to Next You can set the next motion page to be executed after the current page is
finished being played. This can be done by inputting the page to be played next in
the in the “Link to Next” item. If you don’ t need to play another motion page
then set the value to 0 (default value is 0). If you set the value for “Link to Next”
as the number of the current page, then playback will continue infinitely in a loop.
In this case, you can input the key stop the playback. Playback will be stopped
after the Link to Exit motion is completed.

Link to Exit During motion play, if a signal is received, the playback will end after the

executing the page defined by this. If this feature is not needed, then set its value
to 0.

Other Things to Keep In Mind

Page 0, 1 Page 0 and page 1 have special functions so it is recommended that you do not
use them.

“Are you sure?”
The “Are you sure?” message will appear in the following cases.

= When you move to another page without saving.
= When you use the “go” command with a pose that is outside of the step line.
= When you use the “new” command.

Abbrevlation You can use only the first letter of the commands that are used often.

90

EIONQID

6-3. Walking Droid* s Program

Now let’ s build a walking droid as follows.

= When an object is sensed by center sensor, the robot will move forward.

= When handclapped, walking droid will stamp its feet corresponding to a number
of handclaps.

= When “Start” button is clicked, the robot will dance.

Let’ s look at the flow chart below.

<
No

o
<
Button status = Start button ?
No
o
<

Execute forward motion

Repeat feet stamping motion
corresponding to the number
sound sensing event

Execute dance motion

At first behavior control program does not seem to have any problems with it. But
there will be several problems when you run it as is.

The first problem is the position configuration of the humanoid robot when the
program is started. The robot could be in a pose which will make it difficult to
execute a certain motion. Thus it needs a motion to make the humanoid robot
stand straight upright.

EIONQID

The second problem is the number of times the sound is sensed. The starting
value for the number of sound sensing event might not be set to zero. Also, the
robot could sense its own clapping sound as a clap made by the user. If the
number of sound sensing is not set to 0, it will clap endlessly unless there is a
part of the code that will set this value to 0.

The third problem is that when making the robot execute a motion, it will be
almost impossible to set each joint value individually to create the many motions
required.

A flow chart to solve the first and second problems looks like the following.

Execute upright motion event

L 2
Number of sound sensing event< 0

Center sensor value> 100 ?

No

Execute forward motion

Number of sound sensing event< 0

A

ol Repeat feet stamping motion
Number of sound sensing event !=0 corresponding to the number
sound sensing event
No
Number of sound sensing event< 0
p |
\ 2
Oll .
Button status = Start button ? Execute dance motion
No Number of sound sensing event< 0
dl

92

BIOHOID

User s Guide ROBOTIS

Motion Execution

To use the motion data that was created with the motion editor, it is necessary to
use the motion execution function. The motion execution involves inputting a
motion page number of user’ s choice in the “RBobot Motion” item of CM-5.
When the page numbers that will be used in the motion data are managed
separately, it will be very useful when you want to create behavior control

program.
[Label]
2 FPLHY
el |
Motlon Execution Standby

There will be a time when you may
want to stop behavior control

program while the particular _ Yes
motion is running. For that, you Robot motion status= 17
first need to know whether the

motion execution is completed. By No l

checking the “Robot Motion

Status,” you can find out. If the

“Robot Motion Status” is set to 0, it means that the motion execution is
completed, and if not, it will be 1.

[Label]l Motion execution standly

4 STATUS

IF 0 ME Mation... = 1 i

[Gomment]

THEM JUMP Motion...

Motion Execution Stop

[Label]

There is a function that will allow forceful stop without waiting for the motion to
complete. If you put input the value of 0 in “robot motion” item, the robot will
respond very fast to external events. However, keep in mind that even if you use
motion execution stop function, you will have to wait for all current motion pages
and designated final pages to be completed. Therefore, in order to completely
end the motion, you have to use motion execution standby.

LOAD

[Comment]
P FLY
MH Maotion... |- 0

[Labell Motion execution standly [Camment]

IF

sTaTUS
{ MH Mation... S 1 3 THEM Jump Mation...

a3

BIOHOID

User s Guide

ROBOTIS

To create above program, follow the following steps.
“Examples\Example(Walking Droid).opg” inside the CD.

Refer to the

Main routine

[Label] [Comment]
L START
[Label] [Comment]
z CaLL Ready ...
[Label] _ [Camment]
< LOAD ‘% [oolo.. |-
.l
[Labell Loop) [Comment]
4 IF (ﬁ [1oolc.. > 1on) THEM CALL Reszpon...
[Label]) [Comment]
2 IF (‘% [1oolo.. > 0) THEN CALL Fespon...
[Label] : [Comment]
€ IF Button E 16|} THEMN CALL Respon
[Label] i | [Comment])

Button reaction routine for the center reaction, handclap reaction to the sensors

[Label]l Response front [Comment]
8
GaLL Forwar...
[Label] [Comment]
a v
LoAD ‘&fﬁ [oolo.. |- 0
[Label]) [Cammant]
10
RETURM
[Label] Response clapping [Comment]
11 +
LOAD Tterat... :f‘afa [00lo
[Label]l Repeat clapping [Comment]
12
GaLL Foot c...
[Label(] [Comment]
13
COMPUTE Tterat... = herat... =
[Label] [Comment]
14
IF { Tterat... > 1] 3 THEN JUMP Repeat..
[Label(] [Comment]
15 x
LOAD ‘% [1oolo...|:
[Label] _ [Camment]
16
RETURM

a4

EIONQID

Motion execution routine

[Upright] [Forward]
[Label]l Ready pose [Label]l Forward walk
20 B PLAY 23 B FLAY
LOoAD : Motion.. [2- 1 LOoAD MH Mation... |- 2
[Label] [Label]
21 24 .
caL _— ’ii oot — ’ii
[Label] [Label]
22 25
[Foot stamping] [Dancing]
[Label] Foat clap [Label] Dancine
26 L . 3 a0 B PLOY
oD Gl Motion- |- g LOAD [l Motion- |- 7
[Label] [Label]
27 : a0
GALL Mation.. GALL Mation... ’ii

[Label]

[Labe (]
28
RETURMN el
RETURM

Motion completion standby routine

[Labell Motion done [Comment]
32 sTaTUS
F 4 5»5 Mation... = 1 3 THEM JUMP Mation...
H=H
[Label] [Comment]

33
RETURN

Now it is time to generate the required motions.
If you look at the source above, you can see that the following motion is needed.

= Motion page 1: Stand straight up motion
= Motion page 2: Forward motion

= Motion page 6: Foot stamping motion

= Motion page 7: Dancing motion

The Bioloid has motion pages from 1 to 127. When you create the desired motion
onto the page and call this page from the behavior control program, the motion
will be played. We are going to learn how to create a motion in the next chapter,
but first download the provided motion onto the robot and let’ s check if the
program works. To download, go to the menu bar of the behavior control program
and select maintenance and then select motion data download. Here, open and

95

EIONQID

download the provided “Examples\Example(Walking Droid)l.mtn” data. The figure
below shows how to download a motion.

«{ Behavior Control Programmer (Bioloid)
Eile Program BEEREEEGERS Yiew Help
j| | Update CM5 Read from Robot

Update Ax-12 File name : Mo file

Eobot Motion Prograss i

Part name : i - Disconnect GMM-5

After download is complete, execute the play mode by clicking a button.
Go ahead and test by handclapping and putting a hand closer to the robot’ s
waist. Click once again the start button.

96

EIONQID

1. Building a Wireless Remote Control

Bioloid supports two types of wireless communication. With these methods, user
can control the robots remotely or allow the Bioloids to send and receive the
data between each others.

The first method involves sending data using IR (infrared rays) transmitter-
receiver function of AX-S1 and by attaching the Zigbhee module ZIG-100, dedicated
Bioloid wireless device, to CM-5. With this attachment, Bioloid can communicate
via RF method.

7-1. Infrared Communication Program Using the AX-S1

IR Communication
In AX-S1, there is a transmitter-receiver built-in that allows IR communication.
Although IR communication is often used for short distance, as it is strongly
influenced by the direction and the location of its devices, users have to keep in
mind of above limitation when transmitting. As the images below show, IR can
send data in three directions, only one direction is allowed in receiving data.

IR reception direction

IR receiv

IR transmission
direction

IR transmitter

IR Communication H/W
It is the sensor module AX-S1, rather than the CM-5, central control device of
Bioloid, that actually handies the communication. To communicate via infrared,
you need at least two AX-S1s and two CM-5s.

| [............ |' n ast || cMs

g7

EIONQID

IR Communication S/W
The result of communication between AX-S1 can be checked through behavior
control program of CM-5. That is, to control the Bioloid via IR transmission, you
need behavior control program that communicates between each other using

AX-S1.
Behavior control Behavior control
program program
A 4
\ 4 \ 4
CM-5 CM-5
A A
v A
AX-S1 < > AX-S1
Data Transmission

As previously mentioned, AX-S1 is the one that actually handles the
communication. Following that, you have to load the data to AX-S1 in order to
send the data. The values that can be sent are between 0 and 65535. To send the
data, in behavior control program, load the “to be sent remote control data”
address of AX-31 of ID 100. Upon doing so, AX-S1 will inmediately send the data.

Set Parameter X
[Label] g]
3 =z . :
LOAD S Unde fine J I: s
| |
. [Label] @ Custom D = @Huzzar Igex P
L [

2
@ All Dynamizel
e

&Euzzsr time
[Label] . -
] iy [55"?0“ [100]Dynamixel | Mo
ai DD]ME\ .

LOAD UL DXL [1]Dynamixel ~~ Obstacle detected com
[=
DEL [21Dynamixel Light detected compare
I? ” —
¥

1,

i

A v

_ﬂ_xk [31Dynamixel ~

[[Laben

; = -
LOAD er 1 ool |- 200 Bl el

Data Reception
Data reception is much more complicated than the data transmission. Simple
reason being that although data send is determined by the user, no one can

98

EIONQID

predict when there will be data transmission from outside source. Accordingly,
reception standby routine is required. With the proper use of flag available in AX-
S1, user can create reception standby routine. Here, if the value is 0, it means
that data did not arrive, whereas, if the value is other than 0, it indicates that
data has arrived. In behavior control program, Check the arriving new date flag .if
it is not going to be change to o should read value of remote control data
address what you received.

I [Label] Wait received data I [Comment]
5 e ~
IF ((iig [1DD]D..> E: I 1 THEN JUMP

I Hddrass

[[
{5 Custom 1D ~ [y -

4 & Buzzer time

FEE0R [100]Dynamixe| Set Parameter @
i
: b} Address :
DEL [2]Dymsmissl N
£ IR remocon T data -
BXL [3]Dynamixel i) @ “ W_QB “
§ Z—Obstacl detected com ¥ B — g Bueeer tine
DXL [4]Dynamixel e = T ynamixe

Gancel f
DXL [21Dynamixel f
f{)) IR remacan 14
DXL [5]Dpnamixe! "i%
T — /"'_fl?‘i T L < Obstacle delen:lfad .:u)mv
"1 Loap Data (‘i— o0lD, Cancel
Example Let’s take a look at the simple example of AX-S1 transmitter-receiver function. As

below picture shows, it is simply composed of AX-S1 and CM-5. In transmitter, if
the button is pressed, it will send the data via IR, whereas in receiver, when it
receives the data, it will play the melody. Refer to the “Examples\ExamplellR
receiverl.bpg” and “Examples\ExamplellR transmitter).bpg” inside the CD.

a9

BIOHOID

User s Guide

[Transmitter behavior control programi]

ROBOTIS

[Label]

START

[Gomment]

[Label]l tait button input [Gomment]
F (% Button = % 0 THEN LOAD po - (10010 f*% Button
e
[Label] - [Comment]
JUmMp ‘ ‘ Wizt b... ‘
[Label]

[Receiver behavior control program]

[Label] [Comment]
1
= iiiiii
[Label] Wait command [Comment]
2
IF ‘(‘;3_ [oolo. ‘ = ‘ ‘ i} M THEN JumMP ‘ ‘ Wiait ¢ ‘ ‘% Button ‘
[Label] |Iomment] :
o o
LOAD @ [1oolo. :—‘ 255 ‘
[Label]
4
LOAD [oolo. fm;'!l‘: 100D
[Label] ' _ |[Comment])
5
JumPp Wait &
[Label] [Comment]
g
END

100

EIONQID

7-2. Assembling RF Remote Control Using ZIG-100

Zlghee Module Zigbee, just like Bluetooth, is a frequently used PAN(Personal Area Network]
communication technology. Zighee module ZIG-100 is a communication module of
Bioloid and as such, with its communication technology, it enables Bioloid to
transmit the data and control the robots in various ways.

) 26-100 || cM-5

cm-5 || z6-100 |

CM-5 and ZIG-100
By default CM-5, the central control device of Bioloid, does not have ZIG-100.
Thus, for the IR wireless communication between Bioloid, you need to have ZIG-
100 attach to the CM-5. In order to attach it, you need to dissemble CM-5 and
solder the ZIG-100 on Zigbee circuit board, as shown on below pictures. You need
at least two sets of CM-5s and ZIG-100 modules to send and receive data.

101

EIONQID

Zigbee ID ZIG-100 modules each have their own unigue IDs. Following that, in order to
communicate between each others, they need to know the IDs of respective
devices. In general, with known IDs, devices can communicate one to one and
additionally, you can send broadcasting messages to all ZIG-100s. For further
details, you can check out the ZIG-100 manual.

You can change the communication mode setup through the behavior control
program.

CM-5 Setup To setup the IDs of other ZIG-100 from ZIG-100, you have to use behavior control
program. Both CM-5s must have ZIG-100 built-in and must know the unique IDS of
each others.

Additionally, both must set and save the IDs of each others through behavior
control program before communicating.

For example, let’ suppose that robot A has ID of 120 and robot B has ID of 121. For
robot A to send data to robot B, the robot A has to set and save robot B’s ID of
121. Likewise, the robot B has to set and save the ID of robot A, which is 120.

To find own ID and set the ID of others, follow the instruction below. Also refer to
“Examples\Example(Read my RF IDlbpg” and “Examples\Example[Set other RF
ID1.bpg” inside the CD.

[Finding own Zigbee’s ID through the behavior control program]

START

LOAD

24
bot ID

:f My robot ID ; " < >
i, |

Print

lﬁl’rint with line feed

K

[Labell

END

= Other r

-

Own ID cannot be changed as it is read from the ROM of ZIG-100.

102

EIONQID

[Setting up other Zigbee’s ID through the behavior control program]

[Label]

START

[Label]

LOAD

) —> Zigbee ID (Decimal)

[Labell

END

:

2

Z) ALK LED 2
i ; Y Timer

Other robot ID

L
N

)

=

T rooot 10

] P int 2

Once other Zigbee’s ID set, it is maintained even after power is turned off. As
other ID is used for simple communication, the ID can be changed accordingly by
users.

Transmitting through the behavior control program
When you are sending data through the behavior control program, you write the
value (0-65535] in “to be sent data” address. When receiving data, similar to AX-
S1, you first check the “new wireless data arrival” address. If it changes to value
other than 0, it means that new data has arrived and you can read “received
wireless data.”

Take note however that wireless communication by itself means simple
transmission of data between 0 and 65535. Thus, if you want Bioloid to receive
data and to behave accordingly, you must create behavior control program and
set the protocol.

[Sending datal

[Label] I
| ww | [Green)|l(10 Y1 pata meciman

B FLAT Motion pla%age A
b

= Trremocon data

| ‘é‘;h Other robot ID

103

EIONQID

[Receiving datal

[Label]l ‘Wait N [Gamment]
i IF { é R rerQ‘ ‘ = ‘ ‘ 1} ‘) ‘ THEM ‘ JUMP ‘ ‘ Wait ‘ ‘
[Labell — NN [Gomment]
T (e e —
N

TH remocon data ~| = T gemocon data fad

<New wireless data flag >
-> 0: No arrived data
-> 1: Data arrived

Example
Let’ s expand what we have learned before when we created program that turn
on and off AUX LED by pressing a button. Here, let’ s create a program that can
control AUX LED by wireless. Refer to “Examples\ExamplellR receiverl.bpg” and
“Examples\Example(IR transmitter).bpg” inside the CD.

[Sending datal

[Labe]
! STHRT
o

[Label] Wait input

[& oo

[Labe] [Commen t]

{ ‘@ Button

Wait i.. ‘

2
IF

3
ELSE IF

[Label]

4

5

[Receiving datal

[Label] _ [Gomment]

START

[Gomment]
@R}(rem ‘ ‘ 0 M THEN ‘ LoAD ‘ ‘@ ALK LE H@Rm.am ‘ ‘

Jump ‘ ‘ iait o ‘

2
IF ‘(

[Labe(]

[Lahe]

END

104

EIONQID

7-3. Walking Droid Program Controlled by RF Wireless Remote Control

Let’ s apply what we have learned so far in wireless communication to making a
remote control to control the robot remotely.

Refer to “2-2-14 Walking Droid” and build hardware. Additionally, prepare by
purchasing the pair of ZIG-100(not included) and additional CM-5.

Before creating behavior control program, we have to set the IDS of ZIG-100s
accordingly. By referring to “ Examples\Example(Read my RF ID).bpg ” and

“Examples\Example[Set other RF ID1.bpg” prepare ID setup beforehand. The CM-
5 of robot that receives message and CM-5 that will be used as a remote control
will each execute behavior control program.

105

EIONQID

Transmitter CM-5 behavior control program

When the [U | button of CM-5 is pressed, it will send 1.
When the | D | button of CM-5 is pressed, it will send 2.
When the Il button of CM-5 is pressed, it will send 3.
When the [R | button of CM-5 is pressed, it will send 4.
When the [Start | button of CM-5 is pressed, it will send 5.

The actual behavior control program is shown below. Refer to
the “Examples\Example(RF remocon of Walking Droid).bpg” inside the CD.

[Label]
1
START |
Gomment]
5)
i3 { @ Buttan ¥ @ HE THENM LOAD @ TH rem |- 1
[Label] [Camment,]
3 =
ELSETF (‘@ Button ‘ g ‘ ‘% e THEM ‘ LOAD ‘-TX rem..‘i-‘ 2 ‘ |
[Label] [Somment i
4)
ELSETF { @ Buttan g % 2|3 THEN LOAD @ T rem..|- 3
[Labell [Commen t]
5 =
ELSETF (‘@ Buttan ‘ = ‘ ‘% i THEM ‘ LOAD ‘TX rem..‘:—‘ 4 ‘
[Label] [Somment i
5 =
ELSETF t @ Buttan z % 18] THEN LOAD @ T rem.. |- B
[Labell [t
7
JUMP ‘ Loaop ‘
[Label]
]
END

106

EIONQID

Receiver CM-5 behavior control program

When received wireless data is 1, it will take forward motion.
When received wireless data is 2, it will take backward motion.
When received wireless data is 3, it will take left turn motion.
When received wireless data is 4, it will take right turn motion.
When received wireless data is 5, it will take dancing motion.

The actual behavior control program is shown below. Refer to
the “ “Examples\Example(RF control of Walking Droidl.bpg” inside the CD. (Before
running, download Examples\Example(Walking Droid).mtn, motion data from the CD.

[Label] [Commen t]
1
START iiiiii
a mman

[Label] wait d [Cammen t
2 -
r ‘(‘ ren ‘ ‘ i ‘ ‘ ’ ‘)‘ e ‘ e ‘ e ‘ ’ii
[Label] [Commen t]
IF RX rem = 1 THEN LOAD MH Mot 2
[Label] [Commen t]
4) B FLoy
ELSEIF { - RH rem = 2) THEN LOAD MH Mot 3
2]
[Labell [Commen t]
ELSEIF RX rem = 3 THEN LOAD MH Mot 5
[Label] [Commen t]
6 - B PLEY
ELSEIF { ' R rem = 4) THEN LOAD MH Motion... |T- 4
izl
[Labell [Commen t]
ELSEIF RX rem = 5 THEN LOAD MH Motion... |- 7
[Label]

JUMP

Wait c... ‘

[Label]

END

If the program did not run properly, check the Zigbee ID. Also, for
the “Examples\Example(RF control of Walking Droid).bpg,” it needs
“Examples\Example(Walking Droid).mtn” motion data, so make sure that it has
been downloaded.

107

EIONQID

8. Management Mode

This chapter explains about using Manage Mode. In “manage mode” you can
check the robot status and check or change the Dynamixel settings.

8—1. SETTING THE ID AND DYNAMIXEL SEARCH

Robot Terminal Run the Robot Terminal program. In the previous chapter, we have explained how
the CM-5 and the PC is connected. As we have explained comport setup in detail
in previous chapter, we will omit here.

Initial State When you execute the “manage mode” the following screen will show up in the
“Robot Terminal” .

B Bobot Terminal »0.92

Setup Files

CM-5 program version
“TCH-5 Version 1.1
<->PL: PS, <->Dynamixel:10860008 BPS

ID:881 @82
802{0xX082) Dynamixels Found.
[CIDzB81{8X81)]

Here you can see the number and the IDs of the connected Dynamixels. If what
appears on the screen is different from the actual configuration, check the
following.

= Do all the Dynamixel have different IDsS?
= Does the communication speeds between the Dynamixels and CM-5 agree?
= Are the cables connected properly and securely?

To check the wiring, turn the power off the CM-5 and then turn it back on. Check
if the LEDS on the Dynamixels are blinking. If not, check the wiring again.

If the wires are connected properly you can check the communication speed and
find the IDs by using the SEARCH command. This will be covered later.

108

EIONQID

Command Format
Type in a2 command followed by a number (parameter). The following are some
examples.

=D 10
= Dump
= WR 10, 1
= RD 10, 2

HELP Type in help to see the available functions in manage mode.

[CID:0681{0X81)] help

DUMP{D} : Dump control table.

ID [ID_HUM] : Set ID of dynamixel.

CID [ID_HUM] : Change Control ID.

READ [ADDR][LEN] : Read data. ex)}Read 18 2 {Read from B8x18, length 2)
WRITE [ADDRI[DATA1].. : Write data. ex)Write 14,1 {Write 1 at Ox14)
REG_WR [ADDR][DATA1].. : Register write insturction

ACTION : Action REG_MWR instruction

Go [POSITION][SPEED]: Goto the position with the speed.

HEX [HUM][HUM]... : Transmite raw data. ex)Hex FF FF 81 83

RESET : Dynamixel Reset.

PINGE [HUM]: ex) Ping HUM ID dynamixel.

SWR [ADDRI[LEN][ID][DATA]...[ID][DATA]... : Sync Write.

SCAN [HUM] : SCAH linked dynamixel in @“HUM in current baud rate.

LED [HUM] : Blink LED of HUM ID. 'B','N" for ID change. 'Q" for Quit.
BAUD [HUM] : Set baud rate ex) BAUD 22{57600BPS), BAUD 1{1MBPS)
SEARCH : Search ID and baudrate of all linked dynamixels.

Update [START_ID] [EHD_ID] : Dynamixel firmware update.{system user only)

Copyright ROBOTIS CO.,LTD.

[CID:881{8X81)] _

CiD CID is the abbreviation of Control ID. This shows the ID of the Dynamixel that the
CM-5 is controlling. CID is also used as a prompt character in manage mode.

[CH-5 Uersion 1.1]

{->PC:57142 BPS, <->Dynamixel:1800888 BPS
ID:861 aaz

ag
CID:@81{8xe1)

mixels Found.
Indicates the control of Dynamixel that has the ID of Ox01

109

EIONQID

To change the ID of the Dynamixel that the CM-5 controls to number 3, type in the
following commands.

[CID:za@1(axa1)]
[CID:B81{ax81)] cid 3
[CID:-883(AxAa3)]
[CID:BB3(8x083)] _

After the command above, only the Dynamixel with an ID of 0x03 will react.
Communication between the CM-5 and Dynamixel will not occur even if you run
the CID command.

D Use the ID command when you want to change the IDs of all the connected
Dynamixels.
= Usage: ID [ID humber]
= Example) ID 2 Set the connected Dynamixel’ s ID to 2.

The ID command will change the IDs of all the connected Dynamixels regardiess
of the value of the CID. Therefore, when you use the ID command make sure that
there is only one Dynamixel connected to the CM-5.

When you use the ID command make sure that there is only one Dynamixel |
connected to the CM-5

ID 254 Using ID number 254 will send commands to all Dynamixels. A Dynamixel will only
react to a command with its own ID or with ID 254, but it will not send back a
packet for commands sent with ID 254. ID 254 is also called the “Broadcasting
ID.”

SCAN You can find the IDs of the Dynamixels that are connected to the CM-5 by running
the SCAN command. If you type in SCAN N, the program will scan Dynamixel number
0 to N. The SCAN command will only work if the communication speed between the
CM-5 and the Dynamixels is set properly.
= Usage: Scan [number of IDs]

[CID:A83{AXB3)] scan 18
[@00:-][061:0][902:0][683 :-][004:-][085 :-][806--][067 :-][008:-][0689 -]
#82({8582) Dynamixels Found.

[CID:B83{6x03)] _

110

EIONQID

SEARCH If you are not sure if the communication speed between the CM-5 and the
Dynamixel is set properly, you can use the SEARCH command to search the
Dynamixels.

[CID:-883{B8x83)] search
Foundt BAUD REG:881, ID:8f
Found? BAUD REG:881, ID:@82

[CID:B@3(8X83)] _

The SEARCH command is slow and it could find duplicates if similar baud rates are
used. This is because UART communication somewhat robust against baud rate
error.

LED Sometimes you will want to check the ID of each Dynamixel connected to the CM-
9. Type in LED 1D and the LED of the Dynamixel of the selected ID will blink. Type B
and N to change the ID. Typing Q will end the LED command.

[CID:B83{8XA3)] led 1

B{before) ,H{next) ,Q{Quit)

LED Blink ID:@B1

LED Blink ID:882 } When N is typed in
LED Blink ID:083

LED Blink ID:A84

LED Blink ID:@@4 When Qistypedin
[CID-883(axa3)]

8-2. Other Commands

READ This command is used to read the data values in the control table of a Dynamixel.
The READ command is used as the following.
= Usage: READ [ADDRESS] [Data Length for Reading]
The example below shows a command that reads 1 byte from Address 25 of the
Dynamixel with an ID of 1.

[CID:-BB2{8X82)] rd 25 1

-»[Dynamixel]:255 255 082 884 AA2 825 881 221 LEH:008(0X08)
{-[Dynamixel]:255 255 082 0083 AAA 6AA 250 LEH:0@7(0507)
[CID:-B82{08x02)]

11

EIONQID

WRITE This command is used to change a data value of the control table.
The WRITE command format as the follows.
= Usage: WRITE [Address] [Data] [Datal [Datal---
In the example below, you can verify that the LED turns on and off when 1 and 0 is
written to Address 25.
[CID:-@882{0xX62)] w 25 1
-»[Dynamixel]:255 255 @882 @64 AA3 825 6861 228 LEH:888({0X88)
{-[Dynamixel]:255 255 @62 @882 860 251 LEH:886({6X06)
[CID:-@802{0X02)] w 25 @
->[Dynamixel]:255 255 882 @64 A03 825 6868 221 LEH:808(8xX88)
{-[Dynamixel]:255 255 @62 @882 860 251 LEH:886({6X06)
[CID:-@882{0x02)]
Dump This shows the control table values of the Dynamixel. The following shows the

information that is dumped. Refer to the AX-12 manual for more information about
control tables.

Setup Files

[CID:881({0X81)] dump
->[Dynamixel]:255 255 @B1 004 802 000 658 190 LEN:008(0X08)

<-[Dynamixel]:255 255 @B1 @68 8A0 A12 BAA 617 061 BA1 PO PGP AQG 255 MBS 131 @
I[85 @60 1u@ 255 @3 MO2 P4 0G4 GO BG40 PAD 205 G663 AG1 APG A1 AA1 832 B32 143 @
81 DO 808 255 @03 142 061 GO0 9A0 0O 6O 0691 037 GO0 OO0 P00 AOO 032 0BO BAA O
80 149 G661 060 GO BAO GO 699 LEN:064(0X48)

[EEPROM AREA]

Any Key to Continue...

Press any key to continue dump.

MODEL_NUMBER_L (R) [008{0X00)]:012(0%0C)
MODEL_NUMBER_H (R} [061({0Xe1)]:a08(0%08)
UERSION (R) [002(0X02)]:017(0511)
1D (R/\W)[903(6503)] :001(0%01)
BAUD_RATE (R/VW) [004(6504)] : 001 0X01)
RETURN_DELAY_TIHE (R/U)[805 BXA5)] :000(0X06)
CW_ANELE_LIMIT L (R/\)[906 (6506] : 0A0(8X00)
CW_AMELE_LIMIT H (R/\) [907 (6507)] : 080 8X00)
CCW_AMGLE_LIMIT L {R/\) [908 (6508)] :255(OXFF)
CCH_AMGLE_LIMIT_H (R/\) [909(6509)] : 003 (0% 03)
(RESERUED) (R/U)[616 6X6A)] =131 (0X83)
LIMIT_TEMPERATURE (R/WI[@11(BX0B)] : 985 BX55)
DOWH_LIMIT UVOLTAGE (R/WI[012(0X0C)]:060(6X3C)
UP_LIMIT_UOLTAGE (R/W) [013(650D)] : 140(8X8C)
MAX_TORQUE_L (R/ZW) [014(B50E)] :255(OXFF)
MAX_TORQUE_H (R/U)[B15(BX6F)] - 063 (0X03)
RETURN_LEVEL (R/W[B16(BX10)] : 062 (0X02)
ALARM_LED (RZWI[@17 (85113] : 984 (8% B4)
ALARM_SHUTDOWN (R/W)[018(6512)] : 004(0% 04)
(RESERUED) (R/W)[019(6513)] : 000 6% 00)
DOWH_CALIBRATION L (R/W)[926{0X14)]:040(6528)
DOWN_CALIBRATION H (R/W)[621(6X15)]:0080(0X00)
UP_CALIBRATION_L (R/W)[022(8516}] :285(BXCD)
UP_CALIBRATION_H (R/W)[023(6517)] : 083 0X03)

112

EIONQID

GO This command moves the Dynamixel to the specified position. The GO command is
used like the following.
= Usage: GO [Position Valuel [Speed Valuel
Here, the range of parameter values is from 0 to 1023. If you take a look at the
packet, you can see that the WRITE command has been executed starting from
Address 30 which corresponds to goal position and goal speed.

[GID:881(06X81)] go 180 8@

->[Dynamixel]:255 255 @681 007 603 030 100 0660 680 800 B34 LEH:811{0X0B)
{-[Dynamixel]:255 255 @681 @82 @08 252 LEN:@04{6X06)

[CID:881{8x81)]

PING This command does not execute any special tasks, but is used to check to see if
a Dynamixel is connected. The Dynamixel will return a packet even when it
receives a Broadcasting ID with this command.

= Usage: PING [ID]

[CID:BO1{BXB1)] ping 1

->[Dynamixel]:255 255 061 082 861 251 LEN:006(0X06)
<-[Dynamixel]:255 255 061 082 000 252 LEN:006(0X06)
[CID:B81(0X01)] _

REG_WR This command registers the command WRITE. The command is only registered; not
executed. The format is the same as the WRITE command. But it will only execute
when the ACTION command is given.

ACTION This command executes the WRITE command that is registered by REG_WR.
The example below shows the process of turning on a LED using the REG_WR
command. The LED will actually be turned on with the Action command.

[CID:8B1{BX01)] reg_wr 25 1

->[Dynamixel]:255 255 681 864 684 825 881 228 LEN:088(8x08)
{-[Dynamixel]:255 255 861 682 668 252 LEN:@86{0X86)
[CID:B881{8X81)] action

->[Dynamixel]:255 255 254 @82 6685 258 LEN:@86({08X86)
{-[Dynamixel]:

Mo Data[at Broadcast ID 8xFE] LEH:B888{8x88)

[CID:z881(8x81)]

The Action command is executed with the Broadcasting ID. The REG_WR and Action
commands are useful when you want to actuate several Dynamixels starting at
the same time.

113

EIONQID

SYNC_WR When you want to write to several Dynamixels and if the Write Addresses are all
the same, you can use the SYNC_WR command to write to all of the Dynamixels at
once. The format of 2 SYNC_WR command is as follows.

Usage: SWR [ADDRESS] [LENGTH] [ID] [DATAOQ] [DATA1] ---[ID]1 [DATAOI [DATA1]---
The following example shows how to move a Dynamixel of ID = 0 to position
512(0x200) at a speed of 80(0x80) and a Dynamixel of ID = 1 to position 272(0x110]
at a speed of 80(0x80). SYNC_WR is a broadcasting command.
Addr,Length Data of ID=0 Date of ID=1
[CID:881{BXB1)] swr A8 2 88 8 81888
->[Dynamixel]:255 2% 1EI!| BBSB f08 061 000 961 988 A
80 1780 LEN:-@918({8X12)
{-[Dynamixel]:
Ho Data[at Broadcast ID B8xFE] LEN:888{8x88)
[CID:@881{8xa1)] _
Baud This command is used to change the baud rate of the CM-5 Dynamixel controlling
UART. The baud rate is calculated using the following equation.
Speed (BPS) = 2000000/(Parameter Value + 1]
Parameter Values for Important Baud Rates
Parameter Set BPS Goal BPS Error
1 10 10 .0 0.000%
3 5 5 0 0.000%
4 400000.0 400000.0 0.000%
yi 250000.0 250000.0 0.000%
9 200000.0 200000.0 0.000%
16 117647.1 115200.0 -2.124%
34 57142.9 57600. 0.794%
103 19230.8 19200. -0.160%
207 9615.4 9600.0 -0.160%
The Baud command changes the baud rate of the CM-5 itself and all the
Dynamixels that are connected to the CM-5.
Usage: BAUD [Calculated parameter valuell
A maximum Baud Rate error of 3% is within the tolerance of UART communication.

114

EIONQID

RESET

The RESET command will change all the settings of the Dynamixel back to the
factory initial settings.
Usage: reset [ID]

[CID:BB1{BXA1)] reset 1

Are you sure T{ysH)

->[Dynamixel]:255 255 8681 882 8856 2456 LEN:8856({0X056)
{-[Dynamixel]:255 255 8681 882 000 252 LEN:8856({0X056)
[CID:BB1{Bxa1)]

The H command will send the numbers that are typed into the Robot Terminal as
text to the Dynamixels in binary format. The H command is useful when testing the
packet communication protocol.

Usage: H [Parameter] [Parameter] [Parameter]---

So far we have learned the functions of several manage mode commands.

115

EIONQID

9. Information for Advanced Users

This chapter is for advanced users who have experience with microprocessors. In
order to understand the following material you will need to have knowledge of
hexadecimal, binary numbers, and ASCII code. Finally, we briefly explain how to
control the CM-5 using the C language.

9-1. Boot Loader

Boot Loader When power is applied to the CM-5 unit, the “CM Boot Loader” program in Reset
Vector is executed. The “CM Boot Loader” program does not have as many
functions as a PC operating system, but it has the following basic features:
uploading and executing user created programs to the CM-5 unit memory,
verifying the data in the memory, and downloading programs back to a PC. All
numbers are treated in hexadecimal.

Caution If you do not fully understand the system, do not use the Boot Loader |

Execution In the Robot Terminal, press and hold the # key and press the mode switch to go
into the Boot Loader.

The figure below shows the Boot Loader screen. At this point, type “Help” and
press Enter, and the following message will appear.

B Robotis Terminal »0.9

Setup Files

SYSTEM 0.K. {CH Boot loader V1.1)
- help

RESET : Board reset

GO [address] : Jump to the address. Default address is 8x0008.
Down{load)[address] : Download binary file. Default address is 0.

RAM [address] : Dump RAM data from the address.

EEP [address] : Dump EEPROM data from the address.

FLASH [address] : Dump flash data from the address.

CLEAR_EEPROH [address] [length]: Clear EEPROM to O=ff

UP address, length : Upload flash memory data to host.{Push SW for starting)
EEP_DHN address length : Download at EEPROM

EEP_UP address length : Upload from EEPROM

Uerify : Uerify Loading file. X¥Y-???7?7RY¥Y-?77?7%%Y for correct loading.
S¥stem : Set reset mode to boot loader.

APPlication : Set reset mode to application program.

- Entering to boot loader mode : With pushing '#' continuously, reset board.

Copy righted ROBOTIS CO.,LTD. (www.robotis.com)

116

EIONQID

This is @ summary of the functions of the Boot Loader. Let’ s take a closer look
at them, one at a time.

Download Let’ s learn how to download a provided Firmware or a program you have created
onto the CM-5 unit. Let’ s try downloading a program called Bioloid.hex.

Type in the command “load” The following message should appear. This
message indicates that the data is ready to be written to address 0.

- load
Write Address : B0@B88A00
Ready..

Next, select “Transmit file” in the “Files” menu from the Robot Terminal
program as shown below. It is recommended to check the “Add bytesum” menu
item in the “Setup” menu as shown below.

Selecting a File for Transmission

B Bobotis Terminal v0.9

B Bobotis Terminal v0.9

Setup EEIES
Transmit file Ctrl+T | Bt
s Becieve file Cirl+R L Disconnect Ctrl+D L“:
: er
3 i
chet receitilles Moadify calor Ctrl+M |13
Clear screen Cirl+L v Add bytesum i
RESET “--buaru reser . {
G0 [address] : Jump to the a Exit Ctrlex |
UERSION

Select “Examples\ROM file\Bioloid_VerXXX.hex” of the CD as the file to be transmitted.
The selected file will be transmitted to the CM-5 through the serial cable.

Transmission Complete
When the transmission is finished, a “Checksum:xx-xx” message will appear on
the screen as shown below. If the two numbers match, this indicates that there
were no errors during the transmission.

- 1d

Write Address : G0006000
Ready..Success

Rewriting:exe086
Size:8X80800894A1 Checksum:91-91

117

EIONQID

If you press the mode change button, the downloaded program will be executed..

Memory Dump The CM-5 unit not only has 128 Kbytes of flash memory but also 4 Kbytes of RAM
and 4 Kbytes EEPROM. There is a function in the CM-5 boot loader where you can
check the contents in these memory spaces. Type in the memory type as the
command followed by the address. The following figure is an example.

- ram @8

f@o@e00e - BS 09 00 0@ 62 F4 37 00 60 94 OO OO0 00 00 A3 60 Foreeeeaan
00086010 - 10 00 6O OO 60 4D 02 2E 81 2E @A 68 BS 89 1E 88 L PR
00000020 - 88 FBE DC FB 00 69 OO 0P PP B0 18 62 00 00 88 2A b...*

00088030 - G4 B0 96 67 660 87 61 61 81 60 60 68 @0 FF FF OF
00000040 - 00 90 90 00 00 69 0D 00 00 OO 0O OO0 90 00 0O 60
0B0BBO50 - GO0 60 00 0P BB B2 OO OO0 OO 0D OO A0 68 4F B9 95 o..
0@0Ae0GA - 20 00 90 OO G0 89 AP 00 00 00 0O 00 B0 B0 B0 9D
0@oBeO7Y0 - G0 F8 FE FF G0 80 0D OO0 60 OO OO 60 20 08 A 60

- eeprom 188

88088188 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
80088118 = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
80088128 = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
88088138 = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
80088148 = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
88088158 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
@poBe168 = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
88088178 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

- flash 1e888

B0@1EGAA - AC 94 48 F9 18 95 18 95 18 95 18 95 18 95 18 95 . H.............
68@1EG1G - 18 95 18 95 18 95 18 95 18 95 18 95 18 95 18 95 .. _.......
fAA1ERZA - 18 95 18 95 18 95 18 95 18 95 18 95 18 95 18 95
68@1EBG3A - 18 95 18 95 18 905 48 O 18 95 18 95 18 95 18 95
BAA1EBLA - 18 95 18 95 18 95 18 95 18 95 18 95 18 95 18 95
B0@1ERSA - 18 95 18 95 18 95 18 95 18 95 18 95 18 95 18 95
B081EBG0 - 18 95 18 95 18 95 18 95 18 95 18 95 18 95 18 95
B0@1ESFA - 18 95 18 95 18 95 18 95 BC 94 2C F1 18 95 18 95 Jm e aad

118

EIONQID

9-2. USING THE C PROGRAM LANGUAGE

Memory Map

The program for the Bioloid was programmed in C and loaded with the Boot
Loader. In order to write such a program, you will need to know how to program
in C and you should also have some CPU hardware background. This is beyond the
scope of this manual, thus we recommend you refer to other references for such
information.

In this section we will learn about the Boot Loader and what part of the memory it
is located at. We will also learn how much of the memory a user can use for
programming.

The CM-5 uses a CPU called the Atmega128. This CPU has 128 Kbytes of flash
memory. The CM-5 divides the flash memory into several sections, as shown in
the table below.

Address ltem Function

UXUEUUU Bioloid Location of the program that operates the

OXOBFFF program Bioloid

0X0A00D ' Location of the user made behavior control
~ ser area program

OXODFFF

0XOEQ00
~ Motion Data |Area for storing motion data for the robot

OX1DFFF

0X1EQ00 Location of the “Boot Loader” program
~ Boot Loader |[for verifying the download and memory

OX1FFFF status, etc.

When the power is applied, the “Boot Loader” located at address 0x1E000
executes. The file Bioloid_VerXXX.hex is loaded on to the 48 Kbyte user area,
starting at Address 0X00000. You can see that the executable file of the user
created C program has to be loaded at address of 0.

There is a compiler called AVR-GCC for creating the C program that you can use
for free. This will be explained in more detail in chapter 9-3.

Learning how to use C to operate the CM-5 is learning about microprocessors.
Studying robotics and studying the microprocessor are two different things.
Starting from using the IN, OUT commands in the microprocessor may not be an
efficient way to operate a robot. A robot should be considered as a system, not
from the level of a device or a board. When we make a homepage with a PC we

119

EIONQID

usually don’ t use ASM or C directly. We rather use a higher level tool to do the
job. Similar to this, it would be more appropriate to use a higher level tool to
concentrate more on the higher level behavior control of the robot.

g-3. Compiling(Compile)

This section talks about how to compile a CM-5 program. Before going through
this section, we recommend studying the AX-12 manual.

Selecting a Compiler
The CPU on the CM-5 unit is the Atmega128 of the AVR Series from Atmel. There
are many different C compilers available for the Atmega128 but their prices are
generally very high. One the other hand, a global organization called GNU is
distributing their compiler called GCC for free of charge. For this reason, many
research labs and institutions are using this compiler instead. The CM-5 unit also
uses the AVR GCC compiler.

Compiler and Editor

Windows 0S users are familiar with compilers that have an editor function built in.
But for compilers that run on text based 0Ses such as Linux, they usually have a
separate compiler and an editor. The GCC is a compiler based on the command
line interface and thus does not have a built in editor. Therefore, users have to
use a separate editor to develop a program. The AVR-Edit and the WIN-AVR are
two editors for GCC that are popular. We will be using the WIN-AVR editor in this
tutorial. This editor runs the compiler by internally calling the AVR GCC.

Installing the Compiler
Let’ s install and run the AVR GCC Editor, Win-AVR. Win-AVR can be downloaded
from the Internet and you can find a link from the website www.robotis.com. Since
Win-AVR already includes the AVR GCC, the user only needs to install the Win-AVR.
The user can select the following menu after the installation is complete.

w Windows Media Playerf] G&l WHUUUEK Crpress
@& Windows Media Player
‘3 Windows Messenger || 58, Windaws Messenger
I Mera
\’ MSM Explorer) aArt
6 Sy @ Microsaft Office

@) 4R Systems
@ %iIJCSmSDﬁ Office Word) QuickTime
@ =B EH

DEZ2TJMP) B R Winsy
@ =2:2z0 [©@)z36 2710

s e EMLHEMIS,., | G EAhyPrope, | B 2

H
il

1 AR Insight [WinAVR]
&] avr-libc Manual [WinavR]

&] GNU Manuals Online [Win&vR]
@‘3, MFile [WinaWA]
« Programmers Notepad [WinavR]
@3, Tkinfo [WinaWR]
& Uninstall WinavR

&] WinAWR User Manual

~ IR S L A

=
El

b

il

120

EIONQID

Win AVR The Win-AVR editor runs the GCC compiler by calling the AVR GCC internally. From
the Win-AVR menu, select Programmer’ s Notepad [Win AVR]. The following
screen will appear.

¢ Programmers Notepad 2

© File Miew Tools Help
PO T T —F L
Projects X

" &) Projects [Bl Text-Clips |

Ready

Project File When writing a large program, it is helpful to structure the program by dividing the
source file into @ number of smaller files by its contents. The Project File is a
higher-level file that contains the list of the entire source files associated with
the program that is being developed and includes all the compile options. Open a
new Project File as shown below and give it any name as you wish. Here, the
project is named “Simple.” Select “Project” from the “New” menu item
under the “File” menu.

¢ Programmers Notepad 2

Miew Tools Help

|| Default Ctrl+h

o Open., CtlO

Open Project(s),.. Project Group
Close Project
ose Projectis) Plain Text
Recent Files 4 Batch Files
[
Exit =
C#
C58

121

EIONQID

C Source File Next, we open the C source code file which is a lower-level file. Select “C/C++”
from the “New” menu item under the “File” menu.

< Programmers Notepad

‘AN Edit View Tools Window Help

| Hew ¥ B @ i[c/oe =Y v| ®Find -

p [Open... 0 <new> |

% Open Project(s),..
Revert

-

B <new> |:| |§| b__q

Save All
Encoding 4
Export 4

Prooeries... Alt+Enter

To assign a name, select “Save As---” from the “File” menu and give it any
name as you wish. Here, the C source file is named “SimpleMain.c.”

Next, the source file named “SimpleMain.c” needs to be added to the project
file named “simple. On the left side of the project window, right click on
“simple” then click “Add Files” to select “SimpleMain.c”

¢ Programmers Motepad 2

. File Edit Mew Tools MWindow Help
AR W | XB @ [C/C v ;&
Projects SimpleMain.c |

= Mew Project Group

Add Files
Add Mew Folder
Add Magic Folder,,,

SimpleMain.c

Open &ll Files

Active Project

. Bemove Project

Now, a project named “simple” is created which includes a source file called
“SimpleMain.c.”

¢ Programmers Notepad 2

: File Edit Mew Tools MWindow Help

QAR | M| o ¥ BB i[C/Cm v ;&
Projects

(= Mew Project Group

=03
SimpleMain,c

SimpleMain.c |

B SimpleMain.c

122

EIONQID

Main() Type the following in the “SimpleMain.c” source code.

void main(void)
{
}

The above program has no content and is in the form of the most basic structure
of a C source code. Now the source code is completed, the next step is to
compile it. To do so, the user has to select the necessary options for compiling it.

Makeflle The Makefile contains the information for the compile options. Sometimes the
project file may contain the information for these options. However, since the
Win-VAR does not have an internal compiler, it needs a separate Makefile for the
GCC. lust like creating a project, the Makefile needs to be created only once and
then modified as needed.

Location of the Makefile
The Makefile has to be in the same directory (folder location) as the project file
and the main source file that contains the Main function. The name of the file has
to be Makefile without an extension and cannot be changed. Thus, the files
“Makefile,” “Simple. pnproj,” and “SimpleMain.c” have to be in the same
folder.

Editing the Makefile
Makefile contains information on opening and compiling the source file, and the
name of the executable file. Makefile also contains other information but the
important information that the user needs to deal with are the name of the
resultant file, the name of the source file and its directory. This concept will
become clearer once we go through the following tutorial. First, from the CD that
came with the CM-5 unit, copy the Examples\CM-5\makefile to the current

working directory folder.

Running the mfile File Makefie
As the picture shown on the right, run the Save
“mfile” program in Win-AVR. This file only
contains the editing function for Makefile.

zanbe [0,1.2, 3. 5]
ition. = = aptimize for size.
et the bEst optimization level. See awr-

List any extra directories to look for include files here.
#t Each directony must be seperated by a space.
EXTRAINCDIRS =

#t Compiler flag to et the C Standard level

#c89 -"ANSIMC

gnuld - B9 plus GCC extensions

#0399 -150 C99 standard [not vet fully implemented)
gnuid9 - £99 pluz GCC extensions

CETANDARD = -shd=gru3d

123

EIONQID

First, open the file that you want to edit. There are two ways of editing the
Makefile; the user can directly edit the contents of the Makefile, or the user can
use the menu to edit it. To edit it using the menu, the user selects the
“Makefile” menu on the right to change the options while the “mfile” is
running. To directly edit the contents of the Makefile, the user selects the
“Enable Editing of Makefile” under the “Makefile” menu to change options by
using the keyboard..

Editing Using the Menu
When a new project is created, two sections have to be modified in the
Makefile; one is the main file name section, and the other is the C/C++ Source
file(s) section. First set the name of the main file name to “simple.” This is
used for the file names the compiler creates. Source codes can be added in
the C/C++ Source file section. Edit the two sections of the Makefile as shown
below.

File Makefile Help
A

MCU name
MCU = atmegal 28

Dutput format. [can be srec, ihex, binary)
FORMAT = ihex

Target fi & [without extenzion).
/ T = simple

Modified items \‘1 # Li ez here, (C dependencies are automatically generated.)

= Simpletain.c

List &ssembler source files here.

Make them alwaps end in a capital .S. Files ending in a lowercase =

will not be congidered zource files but generated files [aszembler

output from the compiler), and will be deleted upon "make clean'!

Even though the DOSAWIN® filesystern matches both s and .5 the zame,
it will preserve the spelling of the filenames, and goc itzelf does

care about how the name iz spelled on its command-line.

ASRC =

S >

The Makefile can be edited by using the “Notepad” or any text editor.

Summary of Makefile
The concept of Makefile can be tricky for those who use GCC for the first. The
Makefile can be summarized with the following two concepts..

1. The Makefile has to be located in the same folder as the project file and
source file. The name of the Makefile cannot be changed.

2. Within the Makefile, the source file section (SRC) and the resultant file
section (TARGET) needs to be modified as needed.

124

EIONQID

Executing Compile
Select “Make All” from the “Tools” menu of the Programmers Notepad 2
[WinAVR].

£ Programmers Notepad 2

Eile Edit Wiew ‘indow Help
0= & Line Endinas [v Iﬁ.

Projects Use Tabs

) New Project Groug \ 1 Mok &
= [SeliDiag WinAYR] Make All

E] SelfDiag.c ['WinAWR] Make Clean

% LCD.c [WinAYR] Program = of Dynsmixel Evaluation with Ltn
=] Dynamixel. 4,7.20

[£] Serialc L 5 EIN

=) Global, 7

() Globsl.c Qptions

) Interrupt.c

o/
r[' * included files
b

#define ENAELE BIT DEFINITICNS
//#include <io.hx

The compile result message will appear at the bottom of the output window. If the
compile was successful with no error, the “Errors: none” message will appear.

] Projects |8 Text-Cii | [

Output

Zection zize addr
.data 3382 35855864
LLext 746 1}
.hss 705 g392246
.noinit u] 5392951
. EEpYOm ul 5454144
.5tahb le71l6 1}
.stabstr 4599 1}
Total 331438

Errors: none

= Process Exit Code: O

<
[1:1] : TR0 Project file! d¥twaorkp

Simple.hex Download
Now let’ s verify and download the file “simple.nex.” Use the Boot Loader to
download the program. If you run it nothing will happen because the file does not
contain any information.

125

EIONQID

9-4. Example.c

Example.c “Example.c” contains various routines for the CM-5 to directly control the
Dynamixel actuators. Using these routines, one can easily develop a program for
controlling them. Select “Open Project(s)” from the “File” menu on the MinAVR
Programmers Notepad.

¢ Programmers Notepad 2

WEER View Tools Help

Mew »

Ctrl+0)

[* Open...

Becent Files *
Recent Projects »
Exit

Project Open Open the “example.pnproj” project file in the Example folder.

Kl

gh= 2|3 () |E)E><am|3|e v| 3 & O

Do 3 | example, sym !
doc L&é [= Example.o

= exarmple, map
= Example, Ist
example,lss
example,hex
example, elf
\ example.eep

.-J [Z] Example,c

H =M makefile

— fl makefile,bak
5! example, pnproj

WHEHI 23| po gimqu: |example.pnproj v| E71(0)
MHe =& | &Il Files (=) v PN
Encoding: I Aukomatic i |
T

126

EIONQID

Files Open Double-click the “Example.c” on the left and the contents of it appear on the
screen.

¢ Programmers Notepad 2
File Edit View Tools Window Help

QP M| v xB@ /o #

|2 New Project Group

~| jrFind ~

=[5 examplel 2 Ezample.c
£ ample,c e
[Z] iom128.h

% The Example of Dynamixel Evaluation with atmegal2s
* Date : 2004.7.20

¥ author : BS KIM

L

/\k
IT ¥ included files
U

#define EMABLE_BIT_DEFINITIONS
A/#include <io.h>

#include <inttypes.hs>
#include <avro.hs=

#include <avr/interrupt.h>
#include <avr//signal.h>

Compile Select “Make All” from the “Tools” menu to compile. The output after the
compile should look like the following.

Programmers Notepad 2

: File Edit Miew Tools MWindow Help
Q2| W i | ¥BE [C/C vl | e v &

[Pr

0
N

Example_c| 4 bk X

ew Project Group

=

=[5 examplel & Example.c
[£] Example.c y
[l iom128.h

¥ The Example of Dynamixel Evaluation with aAtmegal2s
% Date : 2004.7.20
* authar : BS KIM

st

.noinit o] 2300378 B

. EEPFOm 4] 8454144 e

.debug_aranges 20 o

. debug_pubnames 339 o

.debug_info 1137 o}

. debug_abbrew 298 o

.debug_line 1466 o]

.debug_str 587 o

Total 7917

Errors: none

———————— end -——--—-——

» Process Exit Code: O

s

¢ | >
[1:1] : BRO NS CR+LF INS Project file: E:MyProjmegal 28WExampleWExample.c

127

EIONQID

Download Now, let’ s use the Robot Terminal to download “example.hex” to the CM-5 unit.
Please refer to Chapter 2 for downloading instructions. Use the “Go” command
to execute “example.nex.” The screen shot of this is shown below. Pressing a
key will make it proceed to the next example.

H Bobotis Terminal v0.9

Setup Files
- go ~
Jump Address : Bx00080000

[The Example of Dynamixel Evaluation with ATmega12%,GCC-AVR]

Example 1. Scanning Dynamixels{®™%). -- Any Key to Continue.
TxD:FF FF 08 82 01 FC (LEM:06), RxD:{LEN:08)

TxD:FF FF 61 82 81 FB (LEN:06), RxD:FF FF 81 82 80 FC (LEN:86) Found?* ID:81
T#D:FF FF 82 82 81 FA (LEN:B86), RxD:(LEN:08)

T#D:FF FF 83 82 81 F? (LEN:B6), RxD:(LEN:88)

T=xD:FF FF B84 82 81 F8 (LEN:86), RxD:(LEN:88)

TxD:FF FF 85 82 01 F7 (LEM:06), RxD:{LEN:08)

TxD:FF FF 06 82 01 F6 (LEM:86), RxD:{LEN:08)

T=#D:FF FF 87 82 81 F5 (LEN:B86), RxD:(LEN:08)

T=#D:FF FF 8% 82 81 F4 (LEN:B6), RxD:(LEN:88)

T=xD:FF FF 89 82 81 F3 (LEN:86), RxD:(LEN:88)

Example 2. Read Firmware Version. -- Any Key to Continue.
T#D:FF FF 61 84 82 82 81 F5 (LEN:08)

RxD:FF FF 81 83 88 OF EC (LEN:67)

Return Error : 8e

Firmware Uersion : OF

Example 3. LED ON -- Any Key to Continue.
T=D:FF FF 61 B84 83 19 81 DD (LEH:88)
RxD:FF FF 81 82 88 FC (LEN:86)

Example 4. LED OFF -- Any Key to Continue.
TxD:FF FF &1 04 63 19 068 DE (LEN:088)
RxD:FF FF @1 82 80 FC (LEN:@86) w

Latest file => Tz ExampleWexample hex COMI-57R00

Example 1 sends the “Ping” command to the Dynamixel actuators (ID from 0 to
9] and checks if there are any replies. The Baud rate for the CM-5 is set to
57,600 bps. From the results shown here, you can see that one Dynamixel
actuator with the ID of 1 is connected to the CM-5 unit.

Example 2 demonstrates the use of the “Read” command. It reads the data
from Address 2 of the Control Table of the Dynamixel actuator with the ID of 1.
The data from Address 2 is the Firmware version and the results show that it
currently has a firmware version of OxOF. Please refer to the Dynamixel manual
for information about the Control Table and for the structure of the packets

Example 3 turns on the LED of a Dynamixel actuator by writing 1 to address 0x19
of the Control Table. All actions for the Dynamixel actuators can be activated in
this way by writing data to the corresponding address in the Control Table.

Example 4 turns off the LED of a Dynamixel actuator by writing 0 to address 0x19
of the Control Table.

128

EIONQID

H Hobotis Terminal 0.9
Setup Files

Example 5. Read Control Table. —— Any Key to Continue.

TxD:FF FF &1 84 02 08 31 C7 (LEN:88)

RxD:FF FF 81 33 @8 74 88 BF 61 22 6@ 00 88 FF 63 6@ 55 3C BE FF 83 82 B4 04 @88

18 @0 F6 83 86 6@ @1 o1 28 28 12 00 60 80 FF 63 13 60 00 68 00 00 4A 20 60 6@ 66

88 28 C4 (LEN:37)

[60]:74 [61]:6@ [B2]:0F [63]:81 [B4]:22 [05]:00 [B6]:00 [67]:08 [B8]:FF [09]:83

[BA]:88 [BB]:55 [BC]:3C [BD]:BE [BE]:FF [OF]:083 [18]:02 [11]:84 [12]:84 [13]:808

[14]:18 [15]:0@ [16]:F6 [17]:83 [18]:80 [19]:080 [1A]:01 [1B]:01 [1C]:28 [1D]:28

[1E]1:12 [1F]:0@ [20]:00 [21]:88 [22]:FF [23]:083 [24]:13 [25]:00 [26]:08 [27]:00

[28]:88 [29]:8@ [2A]:4A [2B]:28 [2C]:A8 [2D]:080 [2E]:00 [2F]:88 [38]:20

Example 6. Go 9x280 with Speed 8x180 -- Any Key to Continue.
TxD:FF FF 81 @7 83 1E 80 82 88 81 D3 (LEN:8B)
RxD:FF FF 81 82 688 FC (LEN:86)

Example 7. Go 8x88 with Speed 9x48 -- aAny Key to Continue.
T=D:FF FF 81 87 83 1E 6808 60 48 88 96 (LEMN:BB)
RxD:FF FF 81 82 88 FC (LEN:86)

Example 8. Go O8x3ff with Speed 8x3ff -- Any Key to Continue.
TxD:FF FF 81 87 83 1E FF 683 FF 83 D2 (LEN:BB)

R=D:FF FF 81 82 88 FC (LEN:86)

Example 9. Torque Off -- Any Key to Continue.

T=xD:FF FF 81 84 83 18 80 DF (LEHN:88)

RxD:FF FF 81 82 88 FC (LEN:86)

End. Push reset button for repeat

Latast file =» T Exampletesample hex CORI1-57600

Example 5 reads all the data from the Control Table by sending a packet to read
data from address 0 to 0x31. The figure above shows the list of these 0x37
packets in the [Address]: Data form.

Example 6 demonstrates the command for moving the output of a Dynamixel
actuator to a specified position. This is the most often used command. The Goal
Position value of 0x200 (corresponding to the position at 180 degree] is written
to address 0x1e of the Control Table. The Goal Speed value of 0x100 is written to
address 0x20 of the Control Table as well. Note that both values (Goal Position
and Goal Speed) can be written at the same time using only one packet.

Example 7 and Example 8 each demonstrate the command for moving the output
of a Dynamixel actuator to a specified position, and they follow the same method
as explain in Example 6.

The last example (Example 9) turns off the torque of the Dynamixel actuator by
transmitting a packet to write a 0 to address 0x18 (address for Torque Enable) of
the Control Table.

129

BIOMOIR} User s Guide

Example.c

/*
* The Example of Dynamixel Evaluation with Atmegal28
* Date : 2005.7.11

* Author : BS KIM
*/
/¥
* included files
*/

#define ENABLE_BIT_DEFINITIONS
//#include <io.h>

#include <inttypes. h>
#include <avr/io.h>

#include <avr/interrupt.h>
#include <avr/signal.h>

#define cbi (REG8, BITNUM) REG8 &= ~(_BV(BITNUM))
#define shi (REG8, BITNUM) REG8 |= _BV (BITNUM)

typedef unsigned char byte;
typedef unsigned int word;
#define ON 1

#define OFF 0

#define _ON O

#define _OFF 1

//-— Control Table Address ——

//EEPROM AREA

#define P_MODEL_NUMBER_L 0

#define P_MODOEL_NUMBER_H 1

#define P_VERSION 2

#define P_ID 3

#define P_BAUD_RATE 4

#define P_RETURN_DELAY_TIME 5

#define P_CW_ANGLE_LIMIT_L 6

#tdefine P_CW_ANGLE_LIMIT_H 7

#define P_CCW_ANGLE_LIMIT_L 8

#define P_CCW_ANGLE_LIMIT_H 9

#define P_SYSTEM_DATA2 10
#define P_LIMIT_TEMPERATURE 11
#tdefine P_DOWN_LIMIT_VOLTAGE 12
#define P_UP_LIMIT_VOLTAGE 13

#define P_MAX_TORQUE_L 14
#define P_MAX_TORQUE_H 15
#define P_RETURN_LEVEL 16
#idefine P_ALARM_LED 17
#define P_ALARM_SHUTDOWN 18
#define P_OPERATING_MODE 19

#define P_DOWN_CALIBRATION_L 20
#define P_DOWN_CALIBRATION_H 21
#idefine P_UP_CALIBRATION_L 22
#define P_UP_CALIBRATION.H 23

#define P_TORQUE_ENABLE (24
#define P_LED (25
#define P_CW_COMPLIANCE_MARGIN (26
#define P_CCW_COMPLIANCE_MARGIN (27
#define P_CW_COMPLIANCE_SLOPE (28
#define P_CCW_COMPLIANCE_SLOPE (29

#define P_GOAL_POSITION_L (30
#define P_GOAL_POSITION_H (31
#define P_GOAL_SPEED_L (32
#define P_GOAL_SPEED_H (33
#define P_TORQUE_LIMIT_L (34
#define P_TORQUE_LIMIT_H (35

#define P_PRESENT_POSITION_L (36
#define P_PRESENT_POSITION_H (37
#define P_PRESENT_SPEED_L (38
#define P_PRESENT_SPEED_H (39

ROBOTIS

#define P_PRESENT_LOAD_L (40)
#define P_PRESENT_LOAD_H (41)
#define P_PRESENT_VOLTAGE (42)

#define P_PRESENT_TEMPERATURE (43)
#define P_REGISTERED_INSTRUCTION (44)

#define P_PAUSE_TIME (45)
#tdefine P_MOVING (46)

#define P_LOCK 47
#define P_PUNCH_L (48)
#define P_PUNCH_H (49)
//-— Instruction —

#define INST_PING 0x01
#define INST_READ 0x02
#define INST_WRITE 0x03
#define INST_REG_WRITE 0x04
#tdefine INST_ACTION 0x05
#define INST_RESET 0x06

#define INST_DIGITAL_RESET 0x07
#idefine INST_SYSTEM_READ 0x0C
#define INST_SYSTEM_WRITE 0xOD
#define INST_SYNC_WRITE 0x83
#define INST_SYNC_REG_WRITE 0x84

#define CLEAR_BUFFER gbRxBufferReadPointer = gbRxBufferWritePointer
#define DEFAULT_RETURN_PACKET_SIZE 6
#define BROADCASTING_ID Oxfe

#define TxD8 TxD81
#define RxD8 RxD81

//Hardware Dependent |tem

#define DEFAULT_BAUD_RATE 34 //57600bps at 16MHz

////// For CM-5

#idefine RS485_TXD PORTE & “_BV(PE3),PORTE |= _BV(PE2)
//_485_DIRECTION = 1

#idefine RS485_RXD PORTE & “_BV(PE2),PORTE |= _BV(PE3)
//PORT_485_DIRECTION = 0

/%

////// For CM-2

#define RS485_TXD PORTE |= _BV(PE2); //_485_DIRECTION = 1

#tdefine RS485_RXD PORTE &= ~_BV(PE2) ;//PORT_485_DIRECTION = 0

*/

//#define TXDO_FINISH UCSROA,6 //This bit is for checking TxD
Buffer in CPU is empty or not.

//#define TXD1_FINISH UCSR1A, 6

#define SET_TXDO_FINISH sbi (UCSROA, 6)
#define RESET_TXDO_FINISH cbi (UCSROA, 6)
#define CHECK_TXDO_FINISH bit_is_set (UCSROA, 6)
#define SET_TXDI1_FINISH sbi (UCSR1A, 6)
#define RESET_TXD1_FINISH cbi (UCSR1A, 6)
#define CHECK_TXD1_FINISH bit_is_set (UCSR1A, 6)

#define RX_INTERRUPT 0x01

#define TX_INTERRUPT 0x02

#define OVERFLOW_INTERRUPT 0x01

#define SERIAL_PORTO 0

#define SERIAL_PORT1 1

#define BIT_RS485_DIRECTIONO 0x08 //Port E
#define BIT_RS485_DIRECTIONT 0x04 //Port E

#define BIT_ZIGBEE_RESET PD4 //out : default 1
//PORTD

#define BIT_ENABLE_RXD_LINK_PC PD5 //out : default 1

#define BIT_ENABLE_RXD_LINK_Z|GBEE PD6 //out : default O

#define BIT_LINK_PLUGIN PD7 //in, no pull up

void TxD81 (byte bTxdData) ;
void TxD80 (byte bTxdData) :

130

BIOMOIR} User s Guide

void TxDString (byte *bData) ;

void TxD8Hex (byte bSentData) ;

void TxD32Dec (long ILong) ;

byte RxD81 (void) ;

void MiliSec(word wDelayTime) :

void Portlnitialize(void);

void Seriallnitialize(byte bPort, byte bBaudrate, byte blinterrupt):
byte TxPacket (byte bID, byte binstruction, byte bParameterLength):
byte RxPacket (byte bRxLength) :

void PrintBuffer (byte *bpPrintBuffer, byte bLength):

// — Gloval Variable Number —
volatile byte gbpRxInterruptBuffer[256];
byte gbpParameter [128];

byte gbRxBufferReadPointer;

byte gbpRxBuffer [128];

byte gbpTxBuffer[128];

volatile byte gbRxBufferWritePointer;

int main(void)
{
byte bCount, bID, bTxPacketLength, bRxPacketlLength;

Portlnitialize(); //Port In/Out Direction Definition
RS485_RXD; //Set RS485 Direction to Input State.

Seriallnitialize (SERIAL_PORTO, DEFAULT_BAUD_RAT
E, RX_INTERRUPT) ; //RS485
Initializing (RxInterrupt)

Seriallnitialize (SERIAL_PORT1, DEFAULT_BAUD_RATE, 0) : //RS232
Initializing (None Interrupt)
gbRxBufferReadPointer = gbRxBufferWritePointer = 0; //RS485

RxBuffer Clearing.
sei(); //Enable Interrupt —— Compiler Function
TxDString ("¥r¥n [The Example of Dynamixel Evaluation with

ATmega128, GCC-AVR] ") :

//Dynamixel| Communication Function Execution Step.

// Step 1. Parameter Setting (gbpParameter[]). In case of no
parameter instruction(Ex. INST_PING), this
step is not needed.

// Step 2. TxPacket (ID, INSTRUCTION, LengthOfParameter); —-Total
TxPacket Length is returned

// Step 3. RxPacket (ExpectedReturnPacketLength) : —— Real RxPacket
Length is returned

// Step 4 PrintBuffer (BufferStartPointer, LengthForPrinting):

bID = 1;
TxDString ("¥r¥n¥n Example 1. Scanning Dynamixels(079). —- Any Key
to Continue.”); RxD8O;
for (bCount = 0; bCount < 0x0A: bCount++)
{
bTxPacketLength = TxPacket (bCount, INST_PING, 0) ;
bRxPacketLength = RxPacket (255) ;
TxDString ("¥r¥n TxD:");
PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
TxDString (", RxD:");

PrintBuffer (gbpRxBuffer, bRxPacketLength)
if (bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE)
{
TxDString(” Found!! ID:") ;TxD8Hex (bCount) ;
bID = bCount;
}
}

TxDString ("¥r¥n¥n Example 2. Read Firmware Version. — Any Key to
Continue.”); RxD8();

gbpParameter [0] = P_VERSION; //Address of Firmware Version
gbpParameter [1] = 1; //Read Length

bTxPacketLength = TxPacket (bID, INST_READ, 2) ;

bRxPacketLength =

RxPacket (DEFAULT_RETURN_PACKET_S | ZE+gbpParamet

ROBOTIS

er(11);
TxDString ("¥r¥n TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
TxDString ("¥r¥n RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketlLength) ;
if (bRxPacketLength == DEFAULT_RETURN_PACKET_S|ZE+gbpParameter [1])
{
TxDString ("¥r¥n Return Error
TxDString ("¥r¥n Firmware Version

}

© ”) ; TxD8Hex (gbpRxBuffer [4]) ;
© ") ; TxD8Hex (gbpRxBuffer [5]) ;

TxXDString ("¥r¥n¥n Example 3. LED ON — Any Key to Continue.”):
RxD8() ;

gbpParameter [0] = P_LED; //Address of LED

gbpParameter[1] = 1; //Writing Data

bTxPacketLength = TxPacket (bID, INST_WRITE, 2) ;

bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE) ;

TxDString ("¥r¥n TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;

TxDString ("¥r¥n RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketlLength) ;

TxDString ("¥r¥n¥n Example 4. LED OFF —— Any Key to Continue.”):
RxD8() ;

gbpParameter [0] = P_LED; //Address of LED

gbpParameter [1] = 0; //Mriting Data

bTxPacketLength = TxPacket (bID, INST_WRITE, 2) ;

bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE) ;

TxDString ("¥r¥n TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;

TxDString ("¥r¥n RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketlLength) ;

TxDString ("¥r¥n¥n Example 5. Read Control
Continue.”); RxD8() ;

gbpParameter [0] = 0; //Reading Address

gbpParameter [1] = 49; //Read Length

bTxPacketlLength = TxPacket (bID, INST_READ, 2) ;

bRxPacketLength =
RxPacket (DEFAULT_RETURN_PACKET_S|ZE+gbpParamet
er(11):

Table. —— Any Key to

TxDString ("¥r¥n TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
TxDString ("¥r¥n RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketLength) ;
if (bRxPacketLength == DEFAULT_RETURN_PACKET_S|ZE+gbpParameter [1])
{

TXDString ("¥r¥n”) .

for (bCount = 0; bCount < 49; bCount++)

{

TxD8 (' [') ; TxD8Hex (bCount) ; TxDString (“1:7);
TxD8Hex (gbpRxBuffer [bCount+5]) ;TxD8 (" ") ;

}
}
TxDString ("¥r¥n¥n Example 6. Go 0x200 with Speed 0x100 — Any Key

to Continue.”); RxD8O);
gbpParameter [0] = P_GOAL_POSITION_L; //Address of Firmware Version
gbpParameter [1] = 0x00; //Writing Data P_GOAL_POSITION_L

gbpParameter [2] = 0x02; //Writing Data P_GOAL_POSITION_H
gbpParameter [3] = 0x00; //Writing Data P_GOAL_SPEED_L
gbpParameter [4] = 0x01; //Writing Data P_GOAL_SPEED_H
bTxPacketLength = TxPacket (bID, INST_WRITE, 5) ;
bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE) ;

TxDString ("¥r¥n TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
TxDString ("¥r¥n RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketLength) ;
TxDString ("¥r¥n¥n Example 7. Go 0x00 with Speed 0x40 — Any Key to
Continue.”); RxD8();

gbpParameter [0] = P_GOAL_POSITION_L; //Address of Firmware Version
gbpParameter [1] = 0x00; //Writing Data P_GOAL_POSITION_L
gbpParameter [2] = 0x00; //Writing Data P_GOAL_POSITION_H
gbpParameter [3] = 0x40; //Writing Data P_GOAL_SPEED_L

gbpParameter [4] = 0x00; //Writing Data P_GOAL_SPEED_H
bTxPacketLength = TxPacket (bID, INST_WRITE, 5) ;
bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE) ;

TxDString ("¥r¥n
TxDString ("¥r¥n

TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketLength) ;

TxDString ("¥r¥n¥n Example 8. Go Ox3ff with Speed 0x3ff — Any Key
to Continue.”): RxD8():

131

BIOMOIR} User s Guide

gbpParameter [0] = P_GOAL_POSITION_L; //Address of Firmware Version
gbpParameter [1] = Oxff; //Mriting Data P_GOAL_POSITION_L
gbpParameter [2] = 0x03: //Writing Data P_GOAL_POSITION_H
gbpParameter [3] = Oxff; //Mriting Data P_GOAL_SPEED_L
gbpParameter [4] = 0x03; //Writing Data P_GOAL_SPEED_H
bTxPacketLength = TxPacket (bID, INST_WRITE, 5) ;

bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE) ;

TxDString ("¥r¥n TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
TxDString ("¥r¥n RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketLength) ;

TxDString (“¥r¥n¥n Example 9. Torque Off — Any Key to Continue.”):
RxD8() ;

gbpParameter [0] = P_TORQUE_ENABLE; //Address of LED
gbpParameter [1] = 0; //Mriting Data

bTxPacketLength = TxPacket (bID, INST_WRITE, 2) ;
bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE) ;

TxDString ("¥r¥n
TxDString ("¥r¥n

TxD:”); PrintBuffer (gbpTxBuffer, bTxPacketLength) ;
RxD:”); PrintBuffer (gbpRxBuffer, bRxPacketlLength) ;

TxDString ("¥r¥n¥n End. Push reset button for repeat”);
while(1):

void PortlInitialize(void)

DDRA = DDRB = DDRC = DDRD = DDRE = DDRF = 0;
input direction first.

PORTB = PORTC = PORTD = PORTE = PORTF = PORTG = 0x00; //PortData
initialize to 0

cbi (SFIOR, 2); //All Port Pull Up ready

DDRE |= (BIT_RS485_DIRECTIONO|BIT_RS485_DIRECTION1); //set output
the bit RS485direction

//Set all port to

DDRD |=
(BIT_Z|GBEE_RESET |BIT_ENABLE_RXD_LINK_PC|BIT_E

NABLE_RXD_L INK_ZGBEE) ;

PORTD &= ~_BV(BIT_LINK_PLUGIN); // no pull up

PORTD |= _BV(BIT_ZIGBEE_RESET) :
PORTD |= _BV (BIT_ENABLE_RXD_LINK_PC) ;
PORTD |= _BV(BIT_ENABLE_RXD_LINK_ZIGBEE) :
}
/¥
TxPacket () send data to RS485.
TxPacket) needs 3 parameter; 1D of Dynamixel, Instruction byte,
Length of parameters.
TxPacket) return length of Return packet from Dynamixel.
*/

byte TxPacket (byte bID, byte bInstruction, byte bParameterLength)

{

byte bCount, bCheckSum, bPacketLength:

gbpTxBuffer [0] = Oxff;

gbpTxBuffer [1] = Oxff;
gbpTxBuffer[2] = bID;
gbpTxBuffer [3] = bParameterLength+2;

//Length (Paramter, Instruction, Checksum)
gbpTxBuffer [4] = bInstruction;
for (bCount = 0; bCount < bParameterLength: bCount++)
{
gbpTxBuffer [bCount+5] = gbpParameter [bCount];

bCheckSum = 0;

bPacketLength = bParameterLength+4+2;

for (bCount 2; bCount < bPacketLength-1;
0xff, checksum

bCount++) //except

{

}
gbpTxBuffer [bCount] “bCheckSum;
Inversion

bCheckSum += gbpTxBuffer [bCount];

//Mriting Checksum with Bit

RS485_TXD;

}

/*
Rx
Rx
Rxl
*/

by
{

#d
H#d

ROBOTIS

for (bCount = 0; bCount < bPacketLength; bCount++)
{

sbi (UCSROA, 6) ;//SET_TXDO_F INISH;

TxD80 (gbpTxBuffer [bCount]) ;

}

while (1CHECK_TXDO_FINISH) ; //Wait until TXD Shift register empty
RS485_RXD;

return (bPacketLength) ;

Packet () read data from buffer.
Packet () need a Parameter; Total length of Return Packet.
Packet () return Length of Return Packet.

te RxPacket (byte bRxPacketlLength)

efine RX_TIMEOUT_COUNT2
efine RX_TIMEOUT_COUNT1
unsigned long ulCounter;
byte bCount, bLength, bChecksum;
byte bTimeout;

3000L
(RX_TIMEOUT_COUNT2*10L)

bTimeout = 0;
for (bCount = 0; bCount < bRxPacketlLength; bCount++)
{

ulCounter = 0;
whi le (gbRxBufferReadPointer
{
if (ulCounter++ > RX_TIMEOUT_COUNT1)
{

gbRxBufferlritePointer)

bTimeout = 1;
break:
}
}
if (bTimeout) break:
gbpRxBuffer [bCount]
gbpRx InterruptBuffer [gbRxBufferReadPointer++];

}
bLength = bCount;
bChecksum = 0;

if (gbpTxBuffer[2] != BROADCASTING_ID)
{
if(bTimeout && bRxPacketlLength != 255)
{
TxDString ("¥r¥n [Error:RxD Timeout]”):
CLEAR_BUFFER;
}

if (bLength > 3) //checking is available.
{

i f (gbpRxBuffer [0]
{
TxDString ("¥r¥n
CLEAR_BUFFER;
return 0;
}
i f (gbpRxBuffer [2]
{
TxDString ("¥r¥n
CLEAR_BUFFER;
return 0;

1= Oxff || gbpRxBuffer[1] != Oxff)

[Error:Wrong Header]”);

1= gbpTxBuffer[2])

[Error:TxID != RxIDI"):

}
if (gbpRxBuffer [3]
{
TxDString ("¥r¥n
CLEAR_BUFFER;
return 0;
}
for (bCount

1= bLength-4)

[Error:Wrong Length]”):

2; bCount < blength;
gbpRxBuffer [bCount] ;
if (bChecksum != 0xff)

bCount++) bChecksum +=

132

BIOMOIR} User s Guide

{
TxDString ("¥r¥n [Error:Wrong CheckSum]”);
CLEAR_BUFFER;
return 0;
}
1
}
return bLength;
}

/*

PrintBuffer () print data in Hex code.

PrintBuffer) needs two parameter;
gbpRxBuffer)

name of Pointer (gbpTxBuffer,

*/
void PrintBuffer (byte *bpPrintBuffer, byte blLength)
{
byte bCount;
for (bCount = 0; bCount < bLength; bCount++)
{
TxD8Hex (bpPr intBuffer [bCount]) ;
TxD8(');
}
TxDString (" (LEN: ") ; TxD8Hex (bLength) ;TxD8 (') ") ;
}

/*
Print value of Baud Rate.
*/
void PrintBaudrate (void)
{

TxDString ("¥r¥n
RS232:”) ; TxD32Dec ((16000000L/8L) / ((1ong) UBRRIL
+1L)), TxDString(” BPS,”);

RS485: ") ; TxD32Dec ((16000000L/8L) / ((long) UBRROL+1L)) ;
TxDString(” BPS”) ;

TxDString ("

/*Hardware Dependent |tem*/
#define TXD1_READY bit_is_set (UCSR1A, 5)

// (UCSRTA_Bit5)

#define TXD1_DATA (UDR1)

#define RXD1_READY bit_is_set (UCSRIA, 7)
#define RXD1_DATA (UDR1)

#define TXDO_READY bit_is_set (UCSROA, 5)
#define TXDO_DATA (UDRO)

#define RXDO_READY bit_is_set (UCSROA, 7)
#define RXDO_DATA (UDRO)

/%

Seriallnitialize() set Serial Port to initial state.
Vide Megal128 Data sheet about Setting bit of register.
Seriallnitialize() needs port, Baud rate, Interrupt value.

*/
void Seriallnitialize(byte bPort, byte bBaudrate, byte blnterrupt)
{
if (bPort == SERIAL_PORTO)
{
UBRROH = 0; UBRROL = bBaudrate;
UCSROA = 0x02; UCSROB = 0x18;
if (bInterrupt&RX_INTERRUPT) sbi (UCSROB, 7) ;
enable
UCSROC = 0x06; UDRO = OXFF;
sbi (UCSROA, 6) ; //SET_TXDO_FINISH; // Note. set 1, then 0 is read
}
else if(bPort == SERIAL_PORT1)

// RxD

interrupt

UBRRTH = 0 UBRRIL = bBaudrate;
UCSRTA = 0x02; UGSR1B = 0x18;
if (bInterrupt&RX_INTERRUPT) sbi (UCSR1B, 7) :

// RxD interrupt

ROBOTIS

enable
UCSR1C = 0x06; UDR1 = OxFF;
sbi (UCSR1A, 6) ;//SET_TXD1_FINISH; // Note. set 1, then 0 is read
}
}

/*
TxD8Hex () print data seperatly.
ex> Oxla > "1" "a’.
*/
void TxD8Hex (byte bSentData)
{
byte bTmp;

bTmp =((byte) (bSentData>>4)&0x0f) + (byte)' 0" ;
if(bTmp > " 9") bTmp += 7;
TxD8 (bTmp)
bTmp =(byte) (bSentData & 0x0f) + (byte)' 0’ ;
if(bTmp > '9") bTmp += 7;
TxD8 (bTmp) ;

}

/*

TxD80() send data to USART 0.
*/

void TxD80 (byte bTxdData)

{

whi le (1TXDO_READY) :
TXDO_DATA = bTxdData:
]

/%

TXD81() send data to USART 1.
*/

void TxD81 (byte bTxdData)

while (ITXD1_READY) :
TXD1_DATA = bTxdData;
}

/¥
TXD32Dex () change data to decimal number system
*/
void TxD32Dec (long ILong)
{
byte bCount, bPrinted;
long ITmp, IDigit;

bPrinted = 0;
if(ILong < 0)
{
ILong = -ILong;
D8 (' -');

}
IDigit = 1000000000L ;
for (bCount = 0; bCount < 9; bCount++)
{
ITmp = (byte) (ILong/IDigit);
if (1Tmp)
{
TxD8 (((byte) ITmp)+' Q") ;
bPrinted = 1;
}
else if(bPrinted) TxD8(((byte)|Tmp)+ 0');
ILong —= ((long) ITmp)*IDigit;
IDigit = IDigit/10;
}
ITmp = (byte) (ILong/IDigit);
/*if (ITmp)*/ TxD8 (((byte) ITmp)+ 0);

/*

TxDString() prints data in ACSI| code.
*/

void TxDString(byte *bData)

133

EIONQID

{ whi le ('RXD1_READY) ;

whi le (xbData) return (RXD1_DATA) ;

{ }

TxD8 (xbData++) ;

} /*

} SIGNAL () UARTO Rx Interrupt — write data to buffer
*/

/* SIGNAL (SIG_UARTO_RECV)
RxD81() read data from UARTI. {
RxD81() return Read data. gbpRx InterruptBuffer [(gbRxBufferWritePointer++)] = RXDO_DATA;
*/
byte RxD81 (void)
{

134

EIONQID

10. Bioloid Program Update

This chapter is about the Bioloid program update. We are going to introduce a
way to maintain Bioloid in latest version by showing how to update firmware for
CM-5, main controller, and Dynamixel AX-12. We recommend that you visit Robotis
site, www.robotis.com, and download the latest version.

10-1. CM-5 Program Update

CM-5 program is updated through behavior control programmer. Follow the
process below to update to the latest version.

Step 1 As shown below, connect to the PC and CM-5 and turn on the power.

Connect to the CM-5

Connect to the PC

Step 2 Execute the behavior control programmer.

Dg% El0Ig 7

Qe z2Jmp) b

I Canon PhotoRecord
I Canon Utilities
I U-Stor Windowes Application

2@ uoEs

— | B Bioloid software

+{ Behavior Contral Prograrmmer

% Motion Edior
[Robot Terminal

i Uninstall Bioloid software
1AE . | 7L 2InternetE,,, - @& 3

»

135

http://www.robotis.com/

EIONQID

Step 3 From “Manage” menu, select” CM-5 update” as shown below.

«: Behavior Control Programmer {Bioloid)

~u

= kd

Update A%
Bobot Maotion

Step 4 If you see “Can not connect to CM-5!" message, set “Com port” properly and
click “CM-5 connect” button.

Behavior Control Programmer (Bioloid) E|

! Cannot connect Ck-51 ;
Fiu Flease check the condition of connection,

Update CM-5 software

File name : Mo file

Send £ Total bvted: g /0 Py

Port niarme : SO I Connect GM-5 I

Step 5 After connection, click “Download” button.

Update CM-5 software

File name: Mo file

Send / Total bywted: 0 /0 I

Port name: oo | | e i|

Cloze

136

EIONQID

Step 6 Select CM-5 program file.
Go to Robotis homepage, www.robotis.com and download the latest version. We
recommend that you periodically check out the homepage for the latest updates.

#E R [Bioloid N =l =
e na £ e DXL_DX117_REV0x16_20060518_LD,h
Send / Tota| || EIFTMYER : DXL_RXE4_REVx 16_20060518_LD, he

T e

| DXL _Ax12_REYDx15_20060406_LD, hex
DRHL_AxX12_REVDx16_20060518_LD, hex
DXL_DX113_REWD:16_20060518_LD, hex

L

Port name

OH OIS |Binloid _er113_20060518, hex
OH (T |Bioloid program file(+ hex}

v 97 HE22 SR

Ready [7

Step 7 You will see the update progress bar.
While updating make sure that CM-5 power is not turned off.

Update CM-5 software

File name : Bioloid Ver114_ 20060674 hex
Send / Total byted : 5200 / 40205

Part name : |f.3f;1i--‘|'I _i

137

http://www.robotis.com/

EIONQID

Step 8 If update is successful, you will get the messade indicating so, if not, start once
again from the beginning. IF CM-5 does not operate properly as a result of update
problem, refer to the “9-1. Boot Loader of “9. Information for Advanced Users

and update it manually.

138

EIONQID

10-2. Dynamixel AX-12 Program Update

Step 1

AX-12 program update is a function that was added from the 1.26 version
of “Behavior Control Programmer.” Thus, users who are using versions below
1.26 should visit www.robotis.com and download the latest version and install it.

To see what version is installed, go to “help -> Behavior Control Programmer
Information.”

About Behayior Control Programmer

: Eehavior Contral Programmer
£ Werzion 1.26

Copyright (C) 2008 ROBOTIS. GO, LTD.

<Note: Make sure that CM-5 is at least Ver. 1.13>

AX-12 program is updated in behavior control programmer. Only versions above
Ver 1.13 are applicable. Thus, if you have versions below Ver 1.13, go to
www.robotis.com and download the latest CM-5 program and run the CM-5
upgrade by referring to the “10-1. CM-5 Program Upgrade.” To see the version
of CM-5, refer to the “Robot Terminal” of “8. 1. Setting the ID and Dynamixel
Search”

As shown below, connect to the PC and CM-5 and turn on the power. At this point,
AX-12 must be connected to the CM-5 to update. Also, pre-assembled robot can
be connected at this time. AX-12 that will be updated must have ID between 1 and
19. If there is ID that exceed this range, correct it before running update. Also,
keep in mind that AX-12 that has redundant ID will not update properly.

Connect to the CM-5

Connect to the PC

139

http://www.robotis.com/
http://www.robotis.com/

EIONQID

Step 2 Execute the behavior control programmer.
l_l EXHOZ T Canon PhatoRecord

Canon Utilities ++ Behavior Control Programmer

|J-Star Windows application W otion

HolE= 1 Robot Terminal
] ¢ Uninstall Bialoid software
Bioloid &= EQMN

Step 3 From “Manage” menu, select “AX-12 update” as shown below.

Step4 If you see “Can not connect to CM-5!" message, set “Com port” properly and

click “CM-5 connect” button.

File name : Mo file

Behavior Control Programmer (Bioloid) [g|

l': Can not connect Chi-5l
.

Paort name : GO Connect CM-5

140

EIONQID

Step 5 After connection, click “Download” button.

lUpdate AX-12 software

File name: Mo file

Port name :

Step 6 Select AX-12 program file.
Go to Robotis homepage, www.robotis.com and download the latest version. We
recommend that you periodically check out the homepage for the latest updates.

File name: Mo file

Dawurload
.3

~| « EcfE-

[N file

| &%-12 program file(«rom)
VY BEZE HIR

Step 7 You will see the update progress on the print screen window
While updating make sure that CM-5 power is not turned off.

14

EIONQID

Step 8

lUpdate AX-12 software

Fils name : DHL_AX12_REVDX16.20060518_L D rom

e

Ready to update A¥-12 program.. 100%
Updating A¥-12 proeram..

10:000 wpdatine.. Success!

10:002 updating.. Success!

10002 updating...

Fart name : l—_| i 7
ke |

If you get the message indicating update completion, click

close the AX-12 program update.

Update A%-12 software

File name : DXL AX2_REWDx16_20060518_L Drom

SRR

Heady to update Ax-12 proeram,. § (i
Updating Ax-12 program..
10007 updating.., Success!
10002 updatine... Success!
ID:003 updating... Success!
10004 updating... Success!
ID:005 updating... Success!
ID:006 updatine... Success!

EiE e
Completed updating AX-12 program I

pr—

Fort name : ; Dizconhect GM-5

“close”

button to

142

