

Ver 1.00

 BIOLOID

 User’s Guide

 Closer to Real

 User’s Guide

Contents

1. Before Starting

1-1. A Word of Caution Page 4

1-2. What is Bioloid? Page 6

1-3. Things to Understand Before Starting Page 8

1-4. Package Contents Page 11

2. Learning the Basic Operations

2-1. The CM-5 and Its Operation Modes Page 13

2-2. Behavior Control Program Page 15

2-3. Examples of Simple Behavior Control Page 17

2-4. Understanding ID, Address, and Data Page 27

3. Assembling Basic Robots

3-1. Connecting Frames Page 32

3-2. Wiring and Power Page 33

3-3. Frequently Used Behavior Control Routines Page 35

3-4. Assembling Robot Arm Page 37

4. Behavior Control Programmer

4-1. Opening a File Page 43

4-2. Editing Function of the Behavior Control Programmer Page 44

4-3. Syntax of the Behavior Control Program Page 49

5. Reciprocal Operation Using Sensors

5-1. The AX-S1 Sensor Module Page 56

5-2. Distance Sensing Function Page 57

5-3. Sound Sensing Function Page 58

5-4. Assembling Attacking Duck that Uses Sensor Page 59

5-5. Surrounding Light Sensing Function Page 64

5-6. Melody Playing Function Page 65

5-7. Assembling Intelligent Car that Uses Sensor Page 68

6. Motion Editor

6-1. Using the Motion Editor Page 75

6-2. Motion Editing Using the Robot Terminal Page 84

6-3. Walking Droid Robot’s Program Page 91

2

 User’s Guide

7. Building a Wireless Remote Control

7-1. Infrared Communication Program Using the AX-S1 Page 97

7-2. Building RF Wireless Remote Control Using the ZIG-100 Page 101

7-3. Walking Droid Program Controlled by the RF Wireless Remote Control Page

105

8. Management Mode

8-1. Setting the ID and Dynamixel Search Page 108

8-2. Other Commands Page 111

9. Information for Advanced Users

9-1. Boot Loader Page 116

9-2. Using the C Program Language Page 119

9-3. Compiling Page 120

9-4. Example.c Page 126

10. Bioloid Program Update

10-1. CM-5 Program Update Page 135

10-2. Dynamixel AX-12 Program Update Page 139

3

 User’s Guide

1. Before Starting

1-1. A Word of Caution

A Note on Safety

The user is responsible for any accidents that occur while building the robot. Before

starting, please remember the following.

 Read and study the manual before starting.

 The recommended age for this product is 12 years and older. Those under 15

years must work under supervision.

 Only use the recommended tools and do not use any dangerous tools, such as

knives or drills.

 Do not work on this product if you are feeling sick or feel fatigue, and especially

under influence of alcohol.

 Keep the robot away from your face.

 Keep the robot or its parts away from children.

 Be careful not to get your finger be caught between the joints.

 The product is not waterproof so be cautious when handling near water.

 Only operate the robot indoors.

 Do not operate or store it in under direct sunlight.

 Do not operate or store it near open flames or in humid environments.

Robot Malfunction

If any of the following occurs, immediately turn off the power and contact a

supervisor or the company.

 When you see smoke coming out of the product.

 When the LED does not blink after power is connected.

 When water or foreign substances enter the robot.

 When you detect an unnatural smell from the product.

 When the robot is damaged.

Recharge Problem

 After powering on, when you connect to SMPS and press ○U button, the Power LED will

blink and will began recharging. If there is a problem with recharging, make sure that

fuse is not out. [Refer to the QuickStart for exchanging a fuse]

4

 User’s Guide

Notes Please note the following.

 The beginner should not use self-made cables.

 Only use the right size screw drivers.

 Do not use excess force when tightening the bolts or assembling the parts.

 Turn off the power immediately to avoid damage to the robot if a joint gets

twisted caused by the inappropriate motion settings during development.

 If this is the first time you are building a robot, please build a robot in the

QuickStart following the instructions. A custom-built robot should only be

attempted if you have at least six months experience with the robots.

 To prevent the robots from falling, do not place the robot on a high location such

as on top of a table or desk. Always operate the robot on the ground. If the robot

is damaged due to a fall, it will be ineligible for free repair.

 The joints of the robot and the gears inside the Dynamixel are susceptible to

wear. After a period of time, the backlash of the robot will increase, especially if

excessive load is applied.

 When operating the robot with the SMPS, make sure the robot doesn’t fall and

refrain from excessive movements. This can cause the SMPS cable to break.

Recommended Tools

 Phillips head screwdriver: M2 size

 Flat head slotted screwdriver: Use if the bolt’s groove wears out. Do not use

any other tools. The use of dangerous tools can cause accidents.

Building a Robot

 Don’t attempt to make a robot with more than ten joints if you are a beginner.

You may need many practices before trying to build a complex robot.

 This User’s Guide shows how to build the Robot Arm (3-degree of freedom), and

the Walking Droid(4- degree of freedom).

5

 User’s Guide

1-2. What is Bioloid?

Bioloid The Bioloid is a robot kit where the user can build anything they desire, just like

the Lego sets. But unlike the Lego sets, the robot is built with blocks that are

actuated, so the joints can move. The name “Bioloid” comes from the

words“Bio” + “all” + “oid” meaning that any living thing can be built in the

form of a robot.

 The following are some examples of what can be built with the Bioloid kit. In

addition to below, many other forms of robots can be built.

[Examples of Bioloid Robots]

Function With the use of a distance sensor, sound sensor, and feedback from the joints,

the robot can be programmed to operate autonomously. For example, you can

build a robot dog that gets up when it hears a clap and sits down when it hears

two claps, or a robot that bows when a person comes close. You can also make a

robot that avoids obstacles or a robot that plays with a ball. A robot that can

move by the pressing of buttons or by using the remote control (option) can also

be built. Using the provided software, even people without a background in

robotics can easily program these kinds of robot movements.

6

 User’s Guide

1-3. Things to Understand Before Starting

Before putting the robot together there are a few basics that you have to

understand. First of all, let’s study about the Bioloid’s hardware and software.

The terms used here will be mentioned often throughout the manual so it is

important that you understand them.

Hardware The hardware of the Bioloid consists of three types.

 Dynamixel: This is the basic unit of the Bioloid which acts as a joint or a sensor.

The AX-12 Dynamixel is an actuator that is used as a joint. The AX-S1 Dynamixel is

a sensor unit that can sense both distance and sound.

 CM-5: This is the main controller of Bioloid robot. Batteries that are placed here

supply power to the connected Dynamixel.

 Frame: The frame connects the robot units. The Dynamixel can be connected

together with the use of the frame. Also, the frame connects the Dynamixel and

the CM-5.

Software There are three pieces of software supplied for use with the Bioloid.

 Behavior Control Programmer: This is used for creating a program that controls

the robot behavior. The program is used to implement the motion the robot

follows according to the information received through input devices such as

sensors.

 Motion editor: It is not easy constructing the complex motion of multi-joints

robots with the Behavior Control Programmer only. Motion Editor is software that

helps the creation of robot motions and that calls it whenever it is required.

 Robot Terminal: This is a type of a serial communication terminal program where

advanced users often use to see information displayed on the screen sent by the

robot and also to send the characters typed on the keyboard to the robot.

Frame CM-5 Dynamixel

7

 User’s Guide

Assembling Process

 The step of developing a Bioloid robot

Read the User’s Guide Step 1

Decide the configuration and function of the robot Step 2

Connecting the Dynamixel units around the CM-5 Step 3

Cable connection (beware of connector direction Step 4
and length of the cable)

Simple motion verification (use Motion Editor) Step 5

Behavior control programming Step 6

Step 7
Editing the motion (use Motion Editor)

Step 1 Read and completely understand the manual before trying to build a robot. The

manual consists of nine chapters and the first five chapters are intended for

beginners. The User’s Guide presents examples of developing the Robot Arm and

the Walking Droid (two-legged robot). Once you have completely understood the

User’s Guide, you can explore various robot configurations and experiment with

the program in depth.

Step 2 This is where you decide what kind of robot you will be building. With the Bioloid

kit, you can make all kinds of robots. If you are a beginner, however, we

recommend that you first make the robot that is shown in this User’s Guide.

Step 3 Step 3 is the building stage. First, connect the Dynamixel units to the CM-5 unit as

the center unit. Connect other Dynamixel units to this to create joints and expand

to complete the robot. Secure each part with nuts and bolts.

8

 User’s Guide

Step 4 After the configuration of the robot is completed, the next step is to connect the

cables. Having the CM-5 unit as the center, the wires are connected to, and

through the Dynamixel units. Each cable is made up of three wires. Two of the

wires are for power and one is for communication. Make sure the cables are long

enough so that they allow the joints to bend all the way in either direction.

Connect the cables in a daisy chain fashion as shown in the figure below.

Control Box “CM-5”

The steps up to here complete the building of the robot hardware. The

configuration of the robot is decided in Steps 1, 2, 3, 4 and the function of the

robot will be decided through programming in Steps 5, 6, 7.

Step 5 After you are done building the robot, use the motion editor program to make

sure the robot is properly put together. Make sure all the Dynamixels are

communicating with the CM-5 unit properly. To check if the joints are working

properly, test them by moving each of the joints slightly.

Step 6 In step 6, you will create the behavior control program of the robot. Behavior

control is simply telling the robot to take some kind of action when it enters a

certain state. For example, when the robot is walking forward through a narrow

path, you can make it walk through the center of a path. Or, if there is something

blocking the way, you can make it turn around and go the other way. The behavior

control program takes the form of rules which defines the appropriate motion the

robot should output for specific input information it receives from the sensors.

Step 7 In step 7, you will create the motion of the robot. For robots that use wheels, step

7 is unnecessary because all you have to do to move the wheels is to set the

position or velocity settings of the Dynamixel. But it would be difficult to make a

puppy robot sit or a humanoid robot walk by changing each of its joint angles

individually. In order to move a complicated multi-jointed robot, you have to

“call” a pre-made movement.” This “pre-made movements” (motions) are

what you will create here in step 7. The behavior control program of step 6 will be

able to “call” these “pre-made movement” (motions) of step 7. Step 7

shouldn’t be taken after you are done with step 6, but rather together with step 6.

9

 User’s Guide

PC Requirements

 PC : IBM compatible (Required)

 OS : Windows 2000 or Windows XP (Required)

 CPU: Intel Pentium III 1GHz or AMD Athlon XP 1GHz or higher (Recommended)

 RAM: 256MB or higher (Recommended)

 Graphic Card : 3D acceleration function (Direct 3D supported) (Required)

 HDD free space : at least 300MBytes (Recommended)

 Direct X 8.0 or higher (Required)

10

11

User’s Guide

1-4. Package Contents

(Beginner kit’s parts)

CM-5motor

ADAPTOR-CM5

1

AX-12×4

motor

4

AX-S1

~

×1 ×1

F1 ×4 F3 ×12

F8 ×2 F12×2

N1 ×150

S4 ×20

S-B ×10

BU ×6 WA×6

CABLE-6

CABLE-10

×2

※ Nuts, screws, and cables shown below are the same as the actual size. Place and measure the parts against the below

illustration to choose the correct assembly part.

STICKER ×32

S3 ×20

F2 ×4 F4 ×2 F5 ×1 F6 ×4

F9 ×3 F10 ×10 F11×2 F13 ×4 F14 ×4

SP1 ×4 SP2×4

S1 ×150

S2 ×20

S5 ×20

CABLE-14

CABLE-18

CABLE-20

×3

×2

×1

×1

×1

SMPS Serial Cable CD

FUSE ×1

QuickStart

12

User’s Guide

(Comprehensive kit’s parts)

CM-5

ADAPTOR-CM5

motor

1

AX-12 ×18

motor

18

AX-S1

F1 ×10 F3 ×20

F8 ×3 F12×2

N1 ×400

S4 ×20

S-B ×30

BU ×20 WA ×20

CABLE-6

CABLE-10

×6

※ Nuts, screws, and cables shown below are the same as the actual size. Place and measure the parts against the

below illustration to choose the correct assembly part.

STICKER ×32

S3 ×20

F2 ×10 F4 ×6 F5 ×6 F6 ×12

F9 ×5 F10 ×20 F11×2 F13 ×4 F14 ×4

~

Expansion PCB

F7 ×6

SP1×4 SP2×4 F15 ×1 F16 ×1

N2 ×10

S1 ×400

S2 ×20

S5 ×20

S6 ×20

S7 ×20

S8 ×20

CABLE-14

CABLE-18

CABLE-20

×4

×6

×4

×5

×1
×1

×1
×1

SMPS Serial Cable CD

FUSE ×1

QuickStart

 User’s Guide

2. Learning the Basic Operations

2-1. The CM-5 and Its Operation Mode.

CM-5 The CM-5 is the main controller for the Bioloid. As mentioned previously, the robot

is built by connecting the Dynamixels to the CM-5 as the central unit. In order to

understand how the Bioloid works, you first have to understand how the CM-5

operates.

Serial Cable Jack POWER Status display LED

Applying Power Let’s now apply power to the CM-5 unit. Plug the SMPS into the power jack on

the upper left corner. Then turn the power switch on. One of the mode display

LEDs should be blinking. As you press the mode change button, the mode LED will

change sequentially. Currently, it is in standby mode.

Operating Modes The operating modes of the CM-5 unit is as follows

 Manage mode: This is used when you want to know the status of the CM-5 unit or

the Dynamixels, or when you want to test the motion. This mode should only be

used by advanced users who are very confident with operating the robot.

 Program mode: The mode used for editing the motion.

 Play mode: The mode used for running the behavior control program created.

 Standby mode: The mode before running the other three modes.

 Charging mode: In standby mode, if the SMPS is connected, battery charging will

begin when you press the ○U button.

[Top view of the CM-5

Power JACK

Start button

Mode button

Direction buttons Mode display LED

13

 User’s Guide

Execution If you press the start button during standby mode the CM-5 unit will go into the

mode that you have selected. To go back into standby mode you can press the

mode change button or turn the power switch off and then back on again.

TIP The mode change button is the reset button for the CPU inside the CM-5 unit.

Therefore, when the power is on, the CM-5 will go back to standby mode

whenever the mode change button is pressed.

Serial Cable In order to communicate with a PC, the CM-5 unit has to be connected to it using

a serial cable.

 When using a laptop: Most laptops do not have a serial port, thus you will have to

purchase and use a USB to serial converter device. USB2Serial can be purchase

at local computer stores.

Status Display LED
 There are the four LEDs that indicate the status of the CM-5 unit. The definitions

of each are as follows.

 Power: If the power is on, this LED will be on. The LED will blink when the batteries

inside the CM-5 unit are charging. Recharging starts when the SMPS is connected

to the power jack and the ○U button is pressed in standby mode.

 TXD: This LED is on when the CM-5 unit is transmitting data.

 RXD: This LED is on when the CM-5 unit is receiving data.

 AUX: This LED is assigned for user programming. It can be turned on or off with the

behavior control program.

Direction Buttons

These buttons are also assigned for user programming like the AUX LED.

14

 User’s Guide

2-2. Behavior Control Program

A robot is a machine that can behave in various ways. However, it can do so only

when there is a program that tells how the robot should act for a certain

situation. This program is called the “behavior control program.” A behavior

control program is a series of rules that define the action a robot should take for

the given state. Insert the provided CD into the PC and install the software used

for creating the behavior control program.

Installation You can install following three programs.

 Behavior Control Programmer

 Motion Editor

 Robot Terminal

The following screen appears when you run the behavior control programmer.

Input and Output The behavior control program takes the form of a series of rules that mutually

connect the input and output. For example, let’s say that we want to build a

robot dog that stands up when you clap once and sits down when you clap twice.

The input item (clap once or twice) and the output item (stand up or sit down)

have to be predefined. Also, behavior rules need to be defined that tells what

behavior to output for the given input item (clap once or twice).

15

 User’s Guide

The followings are the general expression sentences for these behaviors.

 If input item 1 occurs, then execute output A.

 If input item 2 occurs, then execute output B.

Thus, understanding what types of input and output items are available is

important to writing a behavior control program. Learning how to use the Bioloid

is to learn about the input and output items. Let’s practice creating a simple

behavior control program using the CM-5 unit’s input and output items now.

16

 User’s Guide

2-3. Examples of Simple Behavior Control

There are several buttons and LEDs on the CM-5 unit that is user definable. Five

out of the total six buttons (except the mode change button) and the AUX LED can

be used for such purposes in Behavior Control Programmer.

 AUX LED

Start button

 Mode button

Direction buttons

Top view of the CM-5

Let’s create a behavior control program as the following.

 Make a program that will turn on the AUX LED when the ○U button is pressed and

turn off the AUX LED when the ○D button is pressed.

Create a new file from the Behavior Control Programmer, as shown in the figure

below.

The following screen will show up.

Select

17

 User’s Guide

“Start” Left double-clicks the first cell in the Behavior Control Programmer. The following

commands should appear. Select “START.”

The “START” command does not instruct a specific action, but rather it tells

that the program is starting. You can see that the first cell is used for

commands. There are around ten commands that are available for the behavior

control program and we have already learned one of them.

“If” The command that we want to input is “if the ○U button is pressed.”

18

 User’s Guide

Double-clicks the first cell of the following line and select the command “If.”

Parameters There are some commands that need to be used together with a number or

symbol. For example, the command “START” does not require any number or

symbol to be used with, but the a command like “compute 1 + 2” requires the

numbers “1”,“2” and the symbol “+.” The command “If” compares two

items so it requires several parameters. Let’s implement the input command “IF

○U is pressed” using several parameters.

 “IF (button status = ○U button) then”

As mentioned earlier, in order to understand and program a behavior control

program, you have to learn about the available input and output items. Here, we

have to find the “○U button”input item that has been used as a parameter.

To select the button status parameter, double-clicks on “undefined” and select

CM-5. Then select the “CM-5 button” item.

[Select CM-5 first.] [Then select item]

19

 User’s Guide

Now select the ○U button. Double-click the parameter on the opposite side and

check the location of the ○U button.

The next step is to select the operator that compares the two parameters. Select

the equal sign.

Finally, select the undefined item and double-click “THEN.”

20

 User’s Guide

If you have done everything correctly, your screen should look like the figure

below.

이

Now we have finished making the complete command sentence, “If (button

status = ○U button), then.” It seems difficult at first but after practicing several

times it should become natural.

“Load” The behavior control program expresses the command, “Turn on the LED” as

“Load LED 1.” Loading 1 mean “ON” and loading 0 means “OFF” for the

LED. Double-click the undefined cell and type in the command sentence. Select

the “LOAD” command.

Select the “AUX LED” item from the CM-5 item as the left parameter of

“LOAD.”

21

 User’s Guide

For the right parameter a number is needed, so first select “INPUT” and then

type in the number 1.

그

러

You have finished creating the following command.

Editing 행동제어 프로그램을 작성하다가 보면, 문장 전체, 심지어는 몇 개의 문장을 통째로 지우거나 복사

Select the number of the sentence that you want to edit. If you press the shift

button and click on a sentence and then another sentence down the list, then

both sentences and all the sentences between the two will be selected

altogether. After you have selected the sentences that need to be edited you

can right click to display to the edit menu as shown below.

Let’s create the second behavior control sentence using the same method as

we used for the first one.

 “If you push the ○D button the LED will turn off.”

22

 User’s Guide

This can be expressed in a behavior control program as the following.

 If (CM-5 button = ○D button) then LOAD CM-5 LED 0.

If you do everything correctly it should look like this.

Finally you have to state the end of the program. Everything that you have done

so far should be like the following.

Save Let’s save everything that we have done so far. To save a program, you can

either use the menu or click on the tool bar icon. Saving is done in the same way

as in any other computer program. The figure below shows how this is done.

 [Saving with the use of the menu] [Saving by clicking on the toolbar]

Download To download the behavior control program onto the robot, the robot and the computer

needs to be connected to each other with a serial cable as shown in the figure below.

To download the behavior control program, the Bioloid robot has to be turned on.

23

 User’s Guide

Connect to CM-5

 Connect to the PC

[Connecting the serial cable]

Click on the download toolbar icon. The following dialog box will show up.

If the CM-5 unit and the behavior control programmer are not connected properly,

then the following error message will show up.

In such cases check the following in order.

 Is the serial cable connected properly?

 Is the robot’s power on?

 Is any other program running?

24

 User’s Guide

 Is the COM port on your PC set up properly?

This is how to set up the COM port on your PC.

 With the serial cable disconnected, click on the COM port set up button, which is

on the bottom left corner of the program download screen.

 Select the correct COM port that the cable is connected, such as COM1 and COM2.

Finish If the download is finished successfully, the following screen will appear and the

robot will be in standby mode. If you press the play button, the behavior control

program that was just downloaded will execute.

How did the program run?

It may seem like the program didn’t run at all and the robot is still in standby

mode. But actually, the robot did indeed enter the play mode for a very short

period of time and then exit back to the standby mode.

Program Editing

If you think about it carefully, you should realize that this is exactly what was

supposed to happen. After the “START” command, two “IF” statements were

executed and then the program was terminated.

Jump For the program to work properly, the two “IF” statements need to be repeated

continuously. For the second statement (the first “IF” statement), type in an

appropriate name in its label. Then, insert a line between the third statement (the

second “ IF” statement) and the fourth statement (“END”) and create a

“JUMP” command. In the parameter after the “JUMP” command, type in the

name of the item of the line you want the program to jump to.

25

 User’s Guide

Now download the program again and see

how it executes. If it does not work properly,

go over the program and check if there are

any errors. If it still doesn’t work then open

and download (Examples\Example(Button and

LED.bpg) from the provided CD. This file is the

source file for the example shown above.

TIP We have pressed the play button and

execute the program by entering the play

mode while the PC was connected to the Behavior Control Programmer. When a

PC is not connected, you can execute a program by manually entering the play

mode by pressing the mode change button and then pressing the start button.

26

 User’s Guide

2-4. Understanding ID, Address, and Data

So far we have learned how to create a simple behavior control program. Now

let’s systematically learn about the available input and output items.

ID As mentioned previously, the Bioloid is made up of Dynamixel units and a CM-5

unit. The input and output items all exist inside these devices. All of these robot

modules are connected to one bus and each of them have their own unique ID.

 CM-5

ID = 1

Address Each Dynamixel units has many input and output items. To access them, each item

is numbered in consecutive order. These numbers are called addresses.

Data Data is the value of each input and output item. If you look at the behavior control

program created previously (Button and LED). bpg, you can see that the LED is

located in the LED item (Address 24) of the CM-5 (unit with ID = 200). We have

made an “If” statement to see if the data it contains is 8 (the data value for

the ○U button). Let’s review the behavior control program again and look at the

“If” statement with this fact in mind.

Setting the input and output items means specifying the ID and address.

The Bioloid has three units: CM-5, AX-12, and AX-S1. Let take a look at the

available input and output items.

ID Assignment The following are the IDs that are assigned to each unit.

 AX-12: ID = 1 ~ 19 (allowed range is 0~30)

 AX-S1: ID = 100 (allowed range is 100~109)

 CM-5: ID = 200

ID = 200 ID = 2 ID = N

27

 User’s Guide

For the AX-12 and AX-S1, you can set or reset the ID as needed. The AX-12s that

come with the Bioloid already have their IDs set in sequential order, but the AX-

12s that come directly from the factory have their IDs set to 1. If you have a

problem with one of these units and have to order a new one, you have to reset

the IDs accordingly. To reset the ID, refer to the“Management Mode,”in User’s

Guide or 3-3. Changing Dynamixel ’ s ID in QuickStart and “ Help Files\ID

changing .wmv “ video clip.

CM-5 input output items and their addresses

Address Icon Name Function
input/ou

tput

24
Start robot

motion

The motion will start when the page

number is loaded

input/ou

tput

25
Playing robot

motion
During motion play:1, otherwise:0

input/ou

tput

26
Wireless data to

be sent
Wireless data to be sent

input/ou

tput

28
Received

wireless data
Received wireless data input

30
New wireless

data

Arrival of new wireless data [When

received: 1 will change to 0 after the

received data is read

input

31 AUX LED
Loading 1 will turn it on and loading 0 will

turn it off

input/ou

tput

32 CM-5 button
The value changes depending on the five

buttons on the CM-5 pressed
input

33 Timer
When a value is loaded, the value

decreases by 1 every 0.1 seconds

input/ou

tput

34
Wireless ID of

another robot

The wireless ID of the robot that you want

to communicate with

input/ou

tput

36
Wireless ID of my

robot

The wireless ID of my robot [cannot be

changed
input

37 Print screen
If you load a value here, it will be displayed

on the screen
output

38

Change lines

after printing

screen

If you load a value here, it will be displayed

on the screen and the line on the screen

will change

output

28

 User’s Guide

You do not have to understand all the items at the beginning. You do not have to

memorize all the address numbers to create a program since most items have

icons and names. You will learn the items of the CM-5 unit one by one as you

read this manual. You don’t have to understand all of the items for the AX-S1

and AX-12 units either when you first start learning about Bioloid. Just refer to

the manual when necessary.

AX-S1 input output items and their addresses

Address Icon Name Function
Input,

Output

26
Value of left side

distance sensor

Value for sensing distance of left side

distance sensor
Input

27

Value of center

side distance

sensor

Value for sensing distance of center

distance sensor
Input

28
Value of right side

distance sensor

Value for sensing distance of right

side distance sensor
Input

29
Left side light

brightness
Value for left side light brightness Input

30
Center light

brightness
Value for center light brightness Input

31
Right side light

brightness
Value for right side light brightness Input

32 Obstacle sensor
Set if the the value is larger than the

standard value [bit-RCL]
Input

33 Brightness sensor
Set if the the value is larger than the

standard value [bit-RCL]
Input

35 Sound volume Value for the sensed sound volume Input

36
Maximum sound

value
Largest volume sensed so far

Input,

Output

37
Number of times

sound is sensed

Number of times a sound is sensed,

such as the number of claps

Input,

Output

38
The time when

sound occurred
Time when sound occurred

Input,

Output

40 Buzzer scale
0~52 (goes up half a not starting at

"La")

Input,

Output

29

 User’s Guide

41
Duration of buzzer

sound

Time interval is 0.1 seconds and a

maximum of 50 intervals is possible. If

it is 255, then a prerecorded sound will

be played (buzzer scal 0~27)

Input,

Output

42 Supplied voltage
Supplied voltage X 10 (12V will be read

as 120)
Input

43
Internal

temperature

The internal temperature of the

Dynamixel (Celsius)
Input

46

Arrival of new

information from

the remote

controller

If new data arrives the setting will be 1

and if the data is read the setting will

change to 0

Input,

Output

48
Received remote

controller data

The value of received remote

controller data
Input

50
Remote controller

data to be sent

The value of remote controller data to

be sent

Input,

Output

52

Standard value of

distance for the

distance sensor

Becomes the standard for the data

setting of address 32
Input

53

Standard value of

brightness for the

light sensor

Becomes the standard for the data

setting of address 33
Input

AX-12 input output items and their addresses

 Add

ress Icon Name Function
Input,

Output

24 Turn on motor
Motor torque will engage when set to

1

Input,

Output

25 LED
Turns on when 1 is loaded and turns
off when 0 is loaded

Input,
Output

26 CW Margin Clockwise compliance range
Input,

Output

27 CCW Margin Counter clockwise compliance range
Input,

Output

28 CW Slope CW compliance slope
Input,

Output

29 CCW Slope CCW compliance slope
Input,

Output

30

31

User’s Guide

30
Destination

position

Joint position from 0° to 300° (300°

when 1023)

Input,

Output

32 Speed
Speed when moving (values from

0~1023)

Input,

Output

34 Torque control
Set maximum torque (values are

0~1023)

Input,

Output

36 Current position Value of current position (0~1023) Input

38 Current speed Value of current speed (0~1023) Input

40 Current load Value of external load (0~1023) Input

42 Supplied voltage
Supplied voltage X 10 (12V will be read

as 120)
Input

43
Internal

temperature

The internal temperature of the

Dynamixel (Celsius)
Input

46
Existence of

movement

1 when executing a move command,

otherwise 2
Input

 User’s Guide

3. Assembling Simple Robot

3-1. Connecting the Frames

In this chapter, we are going to learn the basics of robot assembling. Let’s make

the Robot Arm that has three degrees of freedom. Degree of freedom means the

number of joints. If the robot has many degrees of freedom it can move in many

different ways, however, the robot will also become heavy and slow and will

become hard to operate. The recommended size of a Bioloid robot is as follows.

 Robot weight: No heavier than 2 kg

 Robot height: No higher than 350 mm

F2 The figure below shows how to attach the most basic frame F2 (hinge) to the AX-

12.

 F2

 Assembly method Assembly complete

There are four ways to attach the hinge at an angle increment of 90 degrees.

F3

How to connect a horn and a body Assembly completed

t d

 F3

How to connect a body and a body Assembly completed

32

 User’s Guide

The F3 frame can be connected to three side of the Dynamixel at a 90 degree

angle. There are a total of four ways to connect the frame and the Dynamixel.

There are other additional ways to construct the frame. Refer to the construction

diagram of the robot for more specific information.

3-2. Wiring and Power

Wiring Wiring is an important part of building the robot. Majority of the problems that

occur with the robot are due to faulty wiring. Severed cable due to insufficient

length, cables getting stuck in between the robot’s joints are some of the

problems that may occur (latter problem mostly occurs due to users wanting to

assemble robot in uncluttered fashion, wiring the cable in narrow joint’s space.)

Also, self-made cables are often the cause of problems. Sufficient cables are

provided so try not to use your own self-made cable. Connect the Dynamixels to

the CM-5 unit. As in the figure below, there are four places on the CM-5 unit

where the cables can be connected.

Four wiring locations for CM-5 are illustrated as follows.

 ○3

As in the figure above, the number 1 and 2 bus connectors are located on the

side of the CM-5 unit and the number 4 bus connector is located on the bottom.

The cables should be connected in a daisy chain configuration, as shown in the

figure below.

○1 ○2

○4

Front

Back

33

 User’s Guide

Bus Expansion A robot can have legs, a head, and sometimes a tail. Thus sometimes there will be

a need for more 3 line bus connectors on the CM-5. In such cases a bus

expansion board can be used (connector expansion board is not included in the

beginner’s kit.)

The figure below shows how the connector expansion board is used in wiring.

Connector expansion board

Arrangement of Pins

The figure below shows how the pins on a Dynamixel unit are arranged. Two of

the connectors inside the Dynamixel are connected pin to pin. This is how

connecting in a daisy chain configuration is possible. Pin1 and Pin 2 are where the

wires for the power source are connected. Make sure that the wires are

connected securely.

PIN2: VDD
PIN1: GND

PIN3: Data

PIN1: GND
PIN2: VDD

 PIN3: Data

34

 User’s Guide

Crossing gate Let’s build a simple device as shown below. It is a crossing bar where if you

press ○U button, the bar goes up and down when you press ○D button.

Wiring

Connection and check

Check connected direction

We have to keep in mind of three things when we assemble the robots. first of all,

when the actuator is activated, make sure that the cable line is not too short or

does not get stuck between the joints. Second, keep mind of angle when you are

assembling horn for it can be assembled at an interval of 90°; and when the

horn’s assembled angle is incorrect, there exist possibility of over-current flow,

affecting joint adversely (for instance, it may burn out the fuse in CM-5). You can

check whether the horn is assembled correctly by taking a closer look at the

groove of both horn and AX-12. Additionally, you have to consider the direction

when you assemble Dynamixel. That is, as Dynamixel is symmetrical, users may

inadvertently assemble robot in a reverse direction. Thus, pay attention to the

direction of horn when you are assembling. For details, refer to the manual (2-2-

1).

3-3. Frequently Used Behavior Control

Routines

Location Unit In order to operate Dynamixel

(AX-12), you have to understand

the underlying principle of angle

unit. The AX-12 can control 300°

by 1024 unit steps. When the

groove of both horn and AX-12

150°

(Location value = 512)

0°
30300° 0~360°

(Location value = 0)
Forbidden area (Each value= 1023)

35

 User’s Guide

correspond, the location value will be 512.

Print Screen

Let’s check the above value. There will be times when you want to find out the

value for input and output while creating behavior control program. In this case,

load the value in “ print screen ” item of CM-5. (Refer to

“Examples\Example(Joint position(Crossing Gate)).bpg”inside the CD)

Just like above example, load the current location item onto print screen. As we

need to examine the values in detail, execute the print repeatedly. After

downloading and running above program, bring your hands closer. You will get

the following results.

Desired Position Up to now, we experimented with finding the location value of Dynamixel. Now,

let’s take a look at ways to drive the Dynamixel. If you load the value to

“desired position,” the Dynamixel will move in the direction of its set value. If

you set the value to 512 as shown below, it will move to center position.

Above example implemented “all Dynamixel.” In this case, instead of assigning

36

 User’s Guide

values one by one, you can select “all Dynamixels” and assign values to all the

Dynamixels at once. In crossing gate, we use one Dynamixel. However for robots

that use many joints, you can take advantage of “all Dynamixel.” Refer to the

QuickStart for crossing gate example program.

3-4. Assembling Robot Arm

Example Now that we have learned the basics of building, let’s go ahead and build a robot

arm. First, refer to the “2-2-8. Robot Arm” of QuickStart and build a robot arm.

ID=2

ID=3

 ID=1

 [Side view]

 After you are finished building, make sure that the cables that come out from the

CM-5 bus and into the Dynamixels are all connected properly.

After you are finished building the arm, apply power to the CM-5 unit. Plug in the

power jack into the SMPS and turn the power switch on. The blinking of the

Dynamixel’s LED means that the power has been applied properly.

If the LED does not blink, then check the following.

 Is the CM-5 unit in standby mode? (make sure the mode LED is blinking) If not, it

means that the power was not supplied properly.

 Are the Dynamixels connected properly? Make sure the wiring on the AX-12 units

is done properly. The direction of the three line cables does not matter.

Charging Once the SMPS is connected the robot it can use the outside power source and

also recharge the internal batteries at the same time. Pressing the ○U button in

standby mode will start the recharging. Among the status LED’s of the CM-5 unit,

37

 User’s Guide

there is one labeled Power. This will be ON when running on battery power and will

blink during recharging. When the recharging is almost finished, the blinking will

become faster. When the recharging is done, the blinking will become slow again.

Refer to the “3-2 Charging CM-5” or “Help Files\Charging CM-5. wmv ” video

clip.

Caution Frequent recharging and draining of the battery will reduce the battery life quickly.

This is because of the memory effect and the recharging cycle limit of the battery.

The recommended number of times the battery should be recharged is 300. When

charging, do not disconnect the SMPS until the recharging is completely finished.

Disconnecting the SMPS and plugging it back again often will reduce battery life.

Also, do not charge the batteries without it being inside the CM-5 unit. A

temperature sensor inside the CM-5 measures the temperature of the battery

and determines whether the charging cycle is finished. If you charge the battery

outside the CM-5 unit, there is a danger of over-charging.

Low Battery Sign

The power LED will blink when the robot is low in battery power.

Let’s create a behavior control program that makes the robot arm do the

following.

 Set the Dynamixel so that it can output 1/4 of its max torque.

 Set the position of all the Dynamixels at their center position.

Torque Limit Address number 34 of the AX-12 decides the torque limit. The max data value is

1023. In other words, if you load 1023 into address 34 of a AX-12 unit, then it will

move while outputting the maximum torque possible. If you want one fourths of

the max torque, then load 256, which is one fourths of 1023.

TIP Only integers can be used when inputting numbers for the CM-5 unit. One fourths

of 1023 is 255.75 but you are not allowed to input this number thus the integer

number 256 should be used instead.

 Why would one want to reduce the maximum torque limit? This is because you

could damage the robot if a joint moves to a position over its physically allowed

angle limit of a joint. To prevent this, test the robot with reduced torque first. If

you are sure that there is no problem with the movement, then you can increase

the torque back to normal.

Now let’s build a more complicated behavior control program that does the

38

 User’s Guide

following.

 Set the motor torques to one fourths of its max value.

 Set the motor speeds to one eighths of its max value.

 If the U button is pressed, move the arm up.

 If the D button is pressed, move the arm down.

 If the L button is pressed, turn the AUX LED off and release the power in the arm.

 If the R button is pressed, turn the AUX LED back on and engage power back to

the arm.

This behavior control program can be represented in the form of a flow chart as

shown below.

Start

Torque limit 256, Speed 128

End

Button status = button?

Button status = button?

Button status= button?

Button status = button?

Move arm up

Move arm down

AUX LED 0, Torque limit 0

AUX LED 1, Torque limit 255

Yes

No

Yes

No

Yes

No

Yes

No

39

 User’s Guide

Comments The flow chart shown above is much more complicated than the behavior control

program that we created before. Thus, to prevent mistakes and to make it more

convenient, you can use comments. A comment does not affect execution of the

program but it is rather a memo for the user.

As in the figure below, you can double-click on the cell labeled “Comment” to

type comments in.

Comments written here are only for the user. It will not affect the execution of

the program.

The following figure shows the comments for the flow chart from above.

You can slove the problem step by step if you write in the comments line by line

first as shown above. Let’s now create the behavior control program based on

the comments that we have just typed in.

There is one part of the program that is difficult to accomplish using what we

have learned so far. It is the command that makes the arm move up or down. It

would be easier if we knew the position value of the joints as the arm moves up

or down.

40

 User’s Guide

Now, let’s make a program that prints the value of joint of robot arm on screen.

 Follow the following steps.

 Set the torque limit to 0.

 Display the present position of a joint on screen continually.

The following figure shows how this is done. Refer to the

“Examples\Example(Joint position(Robot Arm).bpg)

Download the program and run it. Moving the robot arm will output the value for

the joint position. With this program, you can select the appropriate values for

moving the arm up and down.

All value of joint’s

torque set at 0.

Load the value of joints to

print screen item.

Continue print out the

changed value on screen

41

 User’s Guide

Appropriate joint position values for moving up the arm.

 Value of joint position ID = 1: 512

 Value of joint position ID = 2: 465

 Value of joint position ID = 3: 860

Appropriate joint position values for moving down the arm

 Value of joint position ID = 1: 512

 Value of joint position ID = 2: 815

 Value of joint position ID = 3: 512

Input these values and complete the program. The following figure shows the

source of the finished program. Refer to the “Examples\Example(Robot

Arm).bpg)

42

 User’s Guide

4. Behavior Control Programmer

So far we have made simple behavior control programs and learned how to use

the Behavior Control Programmer. In this chapter we will be learning the functions

of the behavior control program one by one.

4-1. Opening a File

In the menu, select “file” and the following items can be seen. The items here

are very similar to most other PC programs so they won’t be explained in detail.

Save Open New file

Recent file

New This function creates a new behavior control program file. Several program files

can be opened at the same time and copying and pasting between files is

possible.

Open This function opens a previously saved program.

Save This function saves the program that you are working on. When saving for the

first time, you will be asked to name the file. You can also save a file by clicking

on the “save” icon in the toolbar.

Recent File The program keeps a record of the paths to recently opened files. Instead of

searching for a file and then opening it, you can use this function to take a

shortcut.

43

 User’s Guide

4-2. Editing Function of the Behavior Control Programmer

Selecting a Sentence

Before copying, moving, or deleting a sentence you have to select a sentence.

You can do this by clicking on the number at the very beginning of the sentence.

To select several sentences at the same time press the SHIFT key and click on

the numbers. The following figures show how this is done.

Step 1: Click on the line number at the beginning of the sentence that you want

to select.

Line number

Step 2: While pressing the SHIFT key, click on the last command sentence that

needs to be selected. Then all the sentences that come between the two will all

be selected.

44

 User’s Guide

Editing menu After selecting a command sentence, go to the menu and click on EDIT to see the

editing menu items. This can also be done by right clicking on the selected

sentences.

Cut Cutting a selected sentence will save it and then delete it. This sentence can be

used again elsewhere by using the paste function.

Interval that

has been cut

Copy When you copy a sentence, it might look like nothing is happening, but actually

the selected sentences are being saved. To use paste function, it can be saved

elsewhere.

Paste After cutting or copying a sentence you can paste it somewhere else. You can

also copy or cut and paste from one program to another. Thus, you can copy

command sentences from previously created programs and reuse them by

pasting them to the program you are currently working on.

45

 User’s Guide

Insert When you want to put in another sentence between two sentences you can use

the insert function. Select the number of sentences that you want to insert and

then press “insert.”

[Insert Instruction in two lines selected state makes two blank line]

Erase Use this function when you want to delete a sentence.

Parameter input

 If you double-click a block for the parameters, the following menu will show up.

As in the figure above, you can select between “ CM-5, ” “ Input, ” or

“Dynamixel.” If you select “CM-5” the following menu will show up. Here,

select the desired CM-5 item.

46

 User’s Guide

If you select “input” instead of “CM-5” you will be able to input something

via the keyboard instead, as shown in the figure below. Selecting “input” in the

menu means that the program is expecting you to input a constant or a variable.

When inputting a constant, just type in numbers and when inputting a variable,

type in an appropriate variable name. Just remember that for the variable names

the first word has to start with a letter (numbers 0~9 should not be used as the

first character). After typing in and editing the contents, press Enter and the

information will be entered into the parameter block.

[Example of inputting a constant]

 [[Example of inputting a constant

When you select “Dynamixel” as an input item, a pop up box will appear and

here you can select the ID and address items.

47

 User’s Guide

Correcting To correct an element of a parameter command after you are done editing, first

left click the sentence that you want to correct and then right click to see the

first menu again to correct it.

48

 User’s Guide

4-3. Syntax of the Behavior Control Program

We have learned several commands for the behavior control program with

several examples. Let’s now review it systematically.

Command Sentence

The basic unit of a behavior control program is the command sentence. Each line

tells what the robot should do.

Command

sentence

Inputting a Sentence

 You can create a command sentence by clicking on an empty cell and selecting what

you want from the item list. A sentence is made of a command with an operator, logic

operator, or parameters.

 Command Logic operator Operator

 Parameters

49

 User’s Guide

Command There are three types of commands: execution, condition, and branch.

 Condition: IF, ELSE IF, ELSE, CONT IF

 Execution: START, END, LOAD, COMPUTE

 Branch: JUMP, CALL, RETURN

Start, End These are the very basic commands. The behavior control program will consider

everything between the start and the end command as the program that will

actually be used. The command sentences that are above the start command or

below the end command will be ignored. Also, if there are two start commands, or

if start and end does not exist, an error will occur during the rule check routine.

Segment that will be actually be

executed.

IF IF command is a condition decision command. The command statement has the

following format.

IF | Parameter1 | Operator | Parameter2 | Logic Operator

50

 User’s Guide

Parameter1 and Parameter2 are the objects to be compared, and the operator

decides what type of comparing will to be performed. For example, for a sentence

“If A is larger than B,” “A” is paramter1, “B” is parameter2, and “larger” is

the operator.

Let’s say that there is a traffic signal made of red, orange, and green lights. We

want to make a robot that stops at red, gets ready at orange, and moves at

green. A program using the IF commands would look like the following.

 IF signal = red THEN, robot stops.

 IF signal = orange THEN, robot gets ready.

 IF signal = green THEN, robot moves.

ELSE IF, ELSE

In the program above, the robot has to check all three color conditions. However,

if the signal is red, the robot does not need to check whether the lights are

orange or green. If the signal is orange, the robot does not have to check

whether the lights are red or green. Using the ELSE IF and the ELSE command, we

can simplify the program by eliminating this need for checking all three conditions.

 IF signal = red THEN, robot stops.

 ELSE IF signal = orange THEN, robot gets ready.

 ELSE robot goes.

CONT IF

If you want to change the behavior control program above to implement “If the

signal is red, or if a car is coming, then stop the robot” you can do so using the

CONT IF command. What would happen if we create a program as the following?

 IF, signal = red AND

 ELSE IF, car is coming THEN, stop robot.

The program above tells the robot to stop only when the signal is red and at the

same time if a car is coming. For the command AND, the lines after THEN will be

executed only when both statements are true. In order for the program to work

properly, it has to be changed as the following.

 IF, signal = red OR

 ELSE IF, car is coming THEN, stop robot.

51

 User’s Guide

LOAD The command LOAD will load one item onto another. The sentence structure is as

the following.

LOAD | Parameter 1 | Parameter 2

This commands to load parameter 2 into parameter 1. LOAD is an execution

command which is used like “start the robot motion on page 10” or “Set the

Dynamixel destination position to 500.” For these examples, parameter 1 would

be “start motion” or “destination position” and parameter 2 would be “page

10” or “500.” Also, LOAD is a write command which can be used like “write the

current position of the Dynamixel on the screen,” or “write 20 to variable A.”

In these examples, parameter 1 would be “write on screen” or “variable A”

and parameter 2 would be “current position” or “20.”

Compute This command is used when executing an operator. The command sentence has

the structure as the following.

Compute | Parameter1 | Parameter2 | Operator | Parameter3

The format of the compute command would look like “A = B + C.” In this case,

“A” would be parameter 1 and is the answer that will be stored. The objects to

be added are “B” and “C” which correspond to parameter 2 and parameter

3. There are many kinds of operators including “+”, “-”, “*”, “/”, and they

can be selected from the menu.

JUMP This command is used when the execution order of the sentences need to be

changed. The structure of a JUMP command statement looks like the following.

Command | Parameter

For the parameter, you have to put in a label of the sentence that you want the

program to jump to. The name of the label has to be unique or there will be an

error during the rule check routine.

Example of jump command

52

 User’s Guide

Call, Return

Sometimes you will have to execute an identical code of a program several times.

You can make such a code a subroutine and call it whenever you need to

execute it to simplify the program and for convenience. This technique is used

very often in programming and it becomes especially useful as the program

becomes lengthier.

The CALL command is very similar to the JUMP command, however the difference

is that, for the CALL command, after executing the subroutine the execution will

go back to where the CALL was executed, using the RETURN command. When using

the CALL command, the subroutine should always end with the RETURN command.

 Example of call command

Rule Check After finishing creating a behavior control program, you always have to check if

there are any errors in the syntax. A program with an error cannot be

downloaded to the robot. You can select the rule check item from the program

menu. Places with an error will be highlighted in red. Fix the errors and then run

rule check again.

Error Line

53

 User’s Guide

TIP When you download a program to the robot, rule check will run automatically.

Enable/Disable Code

When creating a program, sometimes you will have to prevent some parts of the

code from being changed. This can be done with enabling or disabling the code

segments. This function can be very useful in programming and can speed up the

development process. The only parts of the program that are changeable are the

parts between “START” and “END.” One way to prevent a part from changing

is to move it outside of “START” and “STOP,” but this would be a troublesome

process. Instead, you can use the “locking” function to protect the part from

being changed.

54

 User’s Guide

 Portion that will be

ignored

Enable / Disable Code

Portions that will be

ignored

55

 User’s Guide

5. Using Sensors

A robot cannot truly be a robot if it simply moves by remote control. A robot has

to be able to move and do things all by itself. The most important thing in making

a robot autonomous is to give it the ability to sense and gather information. For

example, if you want to build a robot that can avoid obstacles, the robot would

first need to have the ability to sense the obstacle.

A device that can sense information is called a sensor. A sensor not only has the

ability to sense objects, but also people or other robots. The process of a robot

sensing outside information and reacting to it via outputting a movement is called

robot interaction.

TIP The interaction between a robot and human is called HRI (Human-Robot

Interaction). Voice and face recognition is also part of HRI. In order to have robots

live with humans, the advanced HRI development is essential

5-1. The AX-S1 Sensor Module

Earlier, we have created a program that controls the robot behavior based on the

robot’s input and output. The output items that we have tested were LED, motor

position, and printing on screen. The input items we have used were mostly using

buttons. In this chapter we will learn more input items using the sensor module

AX-S1.

The figure below shows the AX-S1. The AX-S1 has a distance sensor (3

directions), sound sensor, remote control receiver, and a buzzer.

 Distance sensor area

Remote control

receiver area

Sound sensor

area

56

[External view of the AX-S1 module: Top view, bottom view]

 User’s Guide

The AX-S1 has the identical mechanical and electrical universal expansion

structure as the AX-12 which can be connected to other Dynamixel units.

5-2. Distance Sensing Function

Let’s create a behavior control program that will print the distance sensor

values on the screen. There are three distance sensors. Let’s print the value of

each one by one on the screen. Select LOAD for the command, CM-5 screen as

the left parameter, and sensor 1 of the Dynamixel as the right parameter.

The finished program should look like the following. Refer to the

“Examples\Example(Read IR sensor value.bpg”inside the CD.

A beeping sound will be made when

the AX-S1 is connected to the CM-5

unit and the power is turned on. When

you run the program the result will

look like the following.

Bring your hand closer to the distance

sensor area. When the distance

between the sensor and your hand

decreases, the value printed on the

screen will increase, up to maximum

value of 255.

As the distance increases, the value will decrease down to zero. If the value does

57

 User’s Guide

not go down to zero, this means that the lighting in the surrounding area is too

bright or the sensor is sensing the wall or ceiling.

One thing that you have to be careful about is the fact that the sensitivity is

different between white objects and black objects and thus this value can not be

assumed to be the absolute distance to the object.

There are also many other items related to distance sensing. Refer to the AX-S1

manual for more information.

5-3. Sound Sensing Function

The AX-S1 can also sense sound from the surroundings and can count how many

claps it hears. Let’s create a program that will demonstrate this.

As in the example above, this program will print the noise level of the

surroundings and number of claps onto the screen.

The program will look like the following. Refer to the “Examples\Example(Read

sound and count clap).bpg”inside the CD.

Run the program and try clapping or

making a sound. The output on the

screen will look like the picture on

the left.

There are also many other items

related to sound sensing. Refer to

the AX-S1 manual for more

information.

58

 User’s Guide

5-4. Assembling Attacking Duck that Uses Sensor

We are now going to build a very interesting robot. Let’s make a duck robot that

attacks an object that approaches it.

Attach an AX-S1 unit to the robot arm built in chapter 3 as shown in the figure

below. Refer to the “2-2-11. Attacking Duck” of QuickStart whenever it is

necessary.

 AX-S1

Caution While working with the robot never put your face close to the robot.

The behavior control of above can be divided into the following.

 Set the max joint speed to 128 and torque limit to 256.

 Implement arm bending motion.

 Repeat the two functions below.

 If the value of the distance sensor is greater than 30, move joint number 4

towards the sensed direction.

 If the value of the distance sensor is greater than 120, then straighten the joints

for number 5 and number 6 and then bend them back.

59

 User’s Guide

Since it will be difficult to make the two repeating items into a single command, it

will be better to divide it into small parts. Refer to the following flow chart which

labels the complicated parts as ○1 , ○2 , ○3 , and ○4 .

The figure below shows the behavior control program for part 1. If either of the

left or right distance sensors has a value greater than 30, then part 2 will be

executed. To do this, several condition statements need to be used together. This

can be done by connecting the sentences with “OR.” If not, make the robot

remain in its position.

Start

Torque limit <- 256, Speed <- 128

End

Sensed distance > 30?

Sensed distance > 120?

Rotate joint once toward object

Straighten arm (only joints 2 and 3)

Bend arm

Yes

No

No

Yes

○2 ○1

○4 ○3

Bend arm (only joints 2 and 3)

60

 User’s Guide

Next, let’s go into more detail for part 3. Here, it is sensing objects straight in

front so only the center sensor value needs to be checked.

We have now completed with the overall structure of the program. But we still

have to finish part 2 and part 4.

Take a look at part 2. There are several ways to make joint 4 rotate towards the

direction of the object. Here, we will be using the following algorithm.

 “If “Left distance sensor value > Right distance sensor value” then move to

position 800. (rotate left until 800)

 If “Right distance sensor value > Left distance sensor value” then move to

position 200. (rotate right until 200)

The rotation limit was set to 800 and 200 to prevent the motor from rotating too

much and damaging the wires. If we create the code for this, it will look like the

following.

Finally, we have to finish part 4. The difficult part here is that the arm bending has

to be started after the arm finishes straightening out. The program speed is much

faster than the speed of the actual robot moving, so even before the arm is

finished straightening out the program will set the Dynamixel position value to

where the arm will bend. To prevent this from happening, there is an item in the

Dynamixel called “Existence of movement.” When the Dynamixel is moving, the

“Existence of movement” is

need a routine that will make

the program standby until the

value is 0.

After setti

set to 1, and 0 when not moving. Therefore, we

ng the destination

position, implement the code

for the flowchart shown on

the right. The behavior control

program code will look like the following.

Yes
 “Existence of movement” = 1?

No

61

 User’s Guide

62

The figure below shows the entire program by putting together all the codes

developed so far. Refer to the “Examples\Example(Attacking Duck).bpg”inside

the CD.

Main routine

Routine for front-side/left-side reaction to the sensors

 User’s Guide

Arm bending/straightening routine to front side reaction

Routine that waits until one motion is finished

63

 User’s Guide

5-5. Surrounding Light Sensing Function

Let’s create a behavior control program that will print the surround light sensor

values on the screen. There are three light sensors. Let’s print the value of

each, one by one on the screen. Select LOAD for the command, CM-5 screen as

the left parameter, and sensor 1 of the Dynamixel as the right parameter.

The program will look like the following. Refer to the“Examples\Example(Read

light sensor value).bpg”inside the CD.

Depending on the brightness of light, it

will take values ranging from 0 to 255.

Because the sunlight is very strong,

the test outdoor may not work. In

indoor, sensor can be very sensitive to

devices th t emit strong light,

including flashlight, incandescent lamp

and others.

a

There are also many other items

related to light sensing. Refer to the

AX-S1 manual for more information.

64

 User’s Guide

5-6. Melody Playing Function

AX-S1 can make a sound as there is a buzzer inside. Let’s make a robot that can

make sound or that exhibit expressions using the melody playing function.

Special Melody Play

Special melody is already built inside and there are 27 melody sounds that can be

played by AX-S1.To play the special melody sound, the “buzzer sound” value

must be set to 255 first.

Next, input the value between 0 and 26 to produce the sound.

 If you play other sound before

the previous sound completes,

the previous sound will just

finish. To solve this problem, you

have to wait until the melody

sound completes. For this, check

whether “buzzer sound” is set

to 0.

No
 “Buzzer sound” = 0 ?

Yes

65

 User’s Guide

Now, let’s make a program that plays the special melody sounds from 0 to 26

and that print the numbers corresponding to the sounds.

The program will look like the following. Refer to the “Examples\Example(Play

special melody sound).bpg].bpg” inside the CD

66

 User’s Guide

Musical Notes

While working with the robot never put your face close to the robot. Musical

notes consist of “C D E F G A B C” and AX-S1 has a range of three octaves,

consisting of 52 notes. For more details related to musical notes, refer to the AX-

S1 manual.

 When you input the numbers ranging from 0 to 253, it will make a sound lasting

“O.1 X “Buzzer sound.” That is, if you input the value of 10, the sound will last

for one second (0.1 X 10 = 1). However, if you input the value of 0, instead of 0

(0.1 X 0 = 0), it will last for 0.3 second. If you want to make a sound that continues

forever, input the value of 254; and to stop, input 0.

An example below will play the musical notes “C D E F G A B C” each for one

second and will end it. Refer to “Examples\Example(Play musical note).bpg”

inside the CD.

67

 User’s Guide

5-7. Assembling Intelligent Car that Uses Sensor

We are now going to build a very interesting robot. Let’s make an intelligent car

that makes a melody sound and that moves in opposite direction when an object

moves towards it.

Refer to the “2-2-9. Obstacle Detection Car”of QuickStart whenever it is

necessary.

Detail behavior controls are as follows.

 If the left sensed distance value is greater than 200, it will make left turn while

making melody sound.

 If the right sensed distance value is greater than 200, it will make right turn while

making melody sound.

 If the center sensed distance value is greater than 200, it will go backward while

making melody sound.

 If there are no changes, the car will stop.

 The melody will be special melody play and upon call will generate sound only

once.

As the behavior control of above robot involves complex behavior, it is

recommended that you use function.

68

 User’s Guide

Start

○1

Left turn while making

melody sound
Left sensed distance Yes

> 200 ?

No

○1

Right turn while making

melody sound
Right sensed distance Yes

> 200 ?

No

○1

Move back while

making melody sound
Center sensed distance Yes

> 200 ?

No

Move while making melody

sound

○1

Wheel end

Sound special melody, move

Melody completion, on standby

Wait for substance to disappe

69

 User’s Guide

AX-12 Continuous Turn Mode

To use the wheel motor of AX-12, it is required to set the “continuous turn

mode” rather than the “joint mode.” For more details on the “continuous turn

mode,” refer to the AX-12 manual.

Among the items of AX-12, if you set the “CCW angle limit” 0, it will be set as

“continuous turn mode,” and it will be set to “joint mode” if you input values

other than the 0. If you look closely however, you will notice that there is no

“CCW angle limit” item. For items not available, use “Custom ID” item to

directly control the behavior. In this case, to use “continuous turn mode,” you

have to select “Custom ID.”

Here, you input the value 254, the value representing all Dynamixel in “ID” and

for “address,” input the value of 8, the designated value for“CCW Angle

Limit.”If you want to select specified ID of Dynamixel, input the applicable value in

“ID.”

Input the value of 0 for wheel mode for the AX-12 parameter. Refer to

“Examples\Example(Change endless turn mode).bpg”inside the CD.

70

 User’s Guide

If you want to change back the AX-12 to “joint mode,” input the value of 1023.

Refer to “Examples\Example(Change joint mode).bpg”inside the CD.

Be aware as once you set the AX-12 mode, it will be in a set mode until you

change it directly. Thus, if you try to control the AX-13 by the “continuous turn

mode” when it is set as the “joint mode,” it will not work properly, and vice

versa.

AX-12 Continuous Turn Mode Control

 When the AX-12 is in “continuous turn mode,” it will be controlled in the

“motion speed,” not “desired position.” If you input the value from 0 to 1023

in “motion speed,” AX-12 will rotate clockwise. Of course, the value of 0 will

make the AX-12 stationary. However, if you put the value above 1024, it will

rotate counter-clockwise corresponding to the inputted value. For example, if

you input 600, it will rotate clockwise corresponding to the speed of 600,

whereas, if you input 1624, it will rotate counter-clockwise, once again at the

speed of 600(600+1024).

 [정 회전]

 [역 회전]

71

 User’s Guide

For the intelligent car example here, AX-12 will be set to the “continuous turn

mode.” To do so, refer to “Examples\Example(Change endless turn mode).bpg”

inside the CD. Next will be the intelligent car behavior control program. For that,

refer to “Examples\Example(Intelligent Car).bpg”inside the CD.

Main routine

Routine for left, right and center reaction to the sensors

72

 User’s Guide

Move routine

[Stop] [Backward]

 [Left turn] [Right turn]

Melody sound routine

73

 User’s Guide

6. Motion Editor

There are two ways to edit the motion. One is to use the motion editor and the

other way is to execute the program mode using the robot terminal. The motion

editor has a graphical user interface so it is easy for beginners to use. The robot

terminal uses text mode, so it lets users see all information all at once, thus more

useful to advanced users.

For this chapter, we will take a look at the example of simple two-legged walking

Droid. Refer to the “2-2-14 Walking Droid,” of the QuickStart and make the

hardware part in advance.

74

 User’s Guide

6-1. Using the Motion Editor

Motion Editor The motion editor has a graphical user interface that allows the user to edit a

multi-jointed robot made up of Dynamixels. A user can create and edit motions by

moving the joints by hand and saving each pose using the motion editor. The user

can also connect or repeat edited motions.

The following screen will show up when you run the motion editor.

Page information

Connection In order to use the motion editor, the robot has to be connected to a PC in

standby mode. If the connection fails, go to the start menu and set the “Com

port” correctly and check if the “Com port” is in use or not.

Robot Profile

If you cannot see above screen when the motion editor is running and there is no

problem with the connection, it means that the robot profile is not set properly.

The robot profile is a file that contains the information of the robot composition

elements that defines how many joints it has, the name of them, and the ID

number assigned to them. This information will be different for robot to robot,

thus a different robot profile is needed for a different robot. The robot profile

Saved posed window

Pose task window

Joint information window

Task information

area

75

 User’s Guide

information file will be used by the behavior control programmer and in the

motion editor.

The file extension for the robot profile is *.rbt

Below screen is, after the program is installed, when the motion editor is

executed and is applied to the default robot profile (default.rbt).

[Part where robot profile is used in the motion editor]

Robot Profile Change

 If a specific robot information file has not been selected after installing the

program, then the robot profile file called default.rbt will be selected by default.

Default.rbt contains the information for 1 AX-S1 and 18 AX-12s, and the names of

the joints are set as Dynamixel [ID]. Let’s change this so we can use it on a

"walking Droid.rbt.” with 4 joints.

In the setup menu select “change robot file” and click on “walking Droid.rbt.”

One thing to keep in mind is that the changed robot information will be applied

starting with the next program run. In the behavior control programmer, “Change

Robot File” can be found under the menu “program.”

Re-setup of robot profile

76

 User’s Guide

After selecting the “Walking Droid.rbt.” the robot profile information will look

like the following.

[Walking Droid. rbt. executed in the motion

[Walking Droid. rbt. executed in the Behavior Control Programmer]

Pose The pose is an instance of a motion.

For example, in the figure right, you

will need many poses to make the

robot move one side step.

Creating a Pose

On the motion editor screen, the big picture on the left is the pose work area,

and it shows the current state of the robot. Here, you create a motion by

77

 User’s Guide

setting the desired pose and dragging it to the saved pose area. Connecting

the poses in the saved pose area smoothly creates a motion.

The numbers and poses that are shown on a motion editor screen are the

information for a single motion page. A motion page is made up of 7 poses and

64 bytes of page information. The Bioloid has up to 127 motion pages.

 The Bioloid’s motion memory = 127 motion pages

 1 motion page = 7 poses + page information (64 bytes)

 1 pose = Maximum 30 joints information (position, velocity, and stop

time)

The behavior control program plays the motion using its page number.

The numbers in the joint information window are the position values of the robot

joints. The robot inside the pose task window is the picture of the actual

current robot. Therefore the joint position values shown inside the joint

information window is the actual current joint position of the robot.

Inside the joint information window there is a button turning ON or OFF the torque

of the joints.

Off This will turn off the torque of the selected joint. After pressing the OFF button

you can move the joints by hand.

On After moving the joint to the desired position, press the ON button to see the joint

angle value on the joint information window. The torque will be back on, locking

its joint position.

78

 User’s Guide

You can select several joints at the same time for this operation. Hold the Ctrl

key and select the joints that you want to turn ON or OFF as once.

Shown below is a summary of the process for creating a motion.

Joint OFF Create the desired pose Joint On Add pose

Pose Speed Even if the joint values have been set properly, you still might not be able to get

the desired motion unless you set the speed between poses correctly. On the

bottom of the screen, there is a place where you can set the pose speed.

Spot Time Sometimes you will want to stop while moving from one pose to another. If you

give the robot a stop time, it will stop moving for 7.8 msec per this value and then

play the next pose.

Add Pose If you press the “Add Pose” button in the task information area, the joint

values in the pose task window will be added to the saved pose window. Let’s

create some more poses using the ON, OFF commands.

Play Now let’s connect the inputted poses to create a motion. If you press the play

button the motion will be played using the poses saved in the saved pose window.

This function is useful when you want to test the motion that is currently being

created. If you press the play button and the motion is executed, the button will

changed to stop. If you press the stop button, the motion that is currently running

will stop. Also, if you input the page number, motion that has been saved in that

page will be activated.

Editing the Pose

If you want to execute the pose that has been saved in the save pose window,

double-click the applicable pose. Take note however that to prevent robot from

breaking down due to execution of invalid pose, the program will request for the

confirmation. By checking the color of robot as shown below, you can tell which

poses are valid. For invalid poses, it is indicated by the color black. For more

details, refer to a next page when it covers the valid pose number.

79

 User’s Guide

 Valid poses Invalid poses

Pose Save

 Addition of pose always goes in the end of pose save window. If you want to put

the pose in particular place, however, you can drag and drop as shown below.

Take note however that the previous pose will be overwritten.

Drag & Drop

Pose Move and Insertion

 As you can see from the pictures shown below, you can move the pose by

dragging to applicable place. Also, if you want to insert the pose, just move it

between appropriate poses.

 This function is also possible when you want to move pose from the pose window.

80

Pose insert Pose move

 User’s Guide

Delete Right click the pose to be removed and select delete.

The following is a summary of the above.

 The key to motion editing is posing editing and saving.

 A pose is created using the ON, OFF button and actually moving the robot joint by

hand. Also, you have to set the pose speed and stop time.

 You can move to change order or insert a pose by dragging a pose with your

mouse.

 The motion can be verified by playing it by pressing the Play button.

Save Page During editing, the motion data is stored inside the CM-5’s RAM. When you are

finished creating the motion, use the save command to save the motion page to

the flash memory.

Page information

You can find the page information on the upper right corner of the screen. To

edit the page information double-clicks the area you want to edit and type in the

value.

Page Name You can give a name to each page. The page name is empty as default. If you give

a name for each page it will be convenient for later use.

Page Number This is the unique number (1~127) of each page. If you change the number, it is

possible to move to applicable page.

81

 User’s Guide

Start Address This is the location of the code memory of the page that you are currently

working on. You do not have to be concerned about this information.

Play Count This item tells how many times the motion will be played. The default value is 1.

Number of Poses

When you play the motion, the poses from 0 to the valid number of poses will be

played. Inside the saved pose window, the poses that are not valid are in black

color. Sometimes you will need to change the number of valid poses during

editing, for example, if you want to play the first few poses instead of the whole

thing.

Motion Speed Use this when you want to adjust the play speed of the whole page. The default

value is 32. Setting the value to 64 would be the same as doubling the speed of

each of the poses individually.

Acceleration Time

 Every time a motion is played, the joints go through a process of acceleration 　

constant velocity deceleration. The acceleration time is the time of acceleration

and deceleration (ramp up time plus ramp down time). Reducing the acceleration

time will make the motors acceleration faster and stress on the joints. Increasing

the acceleration time might create an interval which makes it impossible to

complete a motion.

Next Page No.

 You can set the next motion page to be executed after the current page is

finished being played. This can be done by indicating the page to be played next

in the “next page No.” If you don’t need to play another motion page then set

the value to 0 (default value is 0). If you set “Next Page No.” as the number of

the current page, then playback will continue infinitely in a loop. In this case, you

can press the ESC key to stop the playback. Playback will be stopped after the

current page motion is completed.

Final Page No.

 During motion play, if a signal (such as from a remote controller) is received, the

playback will end after the executing the final page defined by this. If this feature

is not needed, then set its value to 0. To use the “motion stop” command in

behavior control program, load 0 in CM-5 “robot motion” item.

Motion Data Download

To download created robot motion to PC, use the “manage” menu of behavior

control programmer.

82

 User’s Guide

 Motion data filename extension is mtn and to download, select “manage”

from the behavior control program menu and choose ‘motion data download.”

Here, open “Examples\Example(Walking Droid)..mtn in the CD and download it. To

download the motion, follow the following steps. Also, refer to the “2-1-2. Robot

Program Download” of the manual.

After download is completed, click close to finish the program.

Motion Data Upload

 If you created the motion with the motion editor and saved the motion, there is a

chance of data loss as modified motion data is inside the robot. To save in more

secure fashion, it is necessary to the save motion data in PC. The motion data

upload is used in such case.

As the motion data upload is more complicated than the download, keep attention

of the following.

 Click “Write to Robot” and input the file name.

 When “Start” button of CM-5 is clicked, the motion data upload will begin.

 When upload is completed, close the motion data dialogue box and click the

“Mode” button of CM-5.

83

 User’s Guide

6-2. Motion Editing Using the Robot Terminal

Once you get familiar with the robot you will want to edit motion in the text

interface instead of the graphic user interface - being able to see all the

information at once can be helpful. In this chapter we will learn how to edit

motion using the robot terminal program.

Robot Terminal The Robot Terminal is a program that connects the CM-5 and the PC. The CM-5

does not have a screen or a keyboard, but the Robot Terminal program will allow

you to input and output information using your the PC. The information outputted

from the CM-5 will go to the PC through the serial cable and then printed on

screen through the Robot Terminal. Also, information inputted in the Robot

Terminal via the keyboard will be sent to the CM-5 through the serial cable.

Keyboard Screen

Setting the Comport

After running the Robot Terminal program, if the connection fails, go to the setup

menu and select Connect to set up the Com port, as shown in the figure below.

Set it to the appropriate Com port and set the communication speed to 57600

bps. You only have to set the Com port once since this information will be saved

inside the program.

84

 User’s Guide

Apply power to the CM-5 and run the program mode. To do this, go into program

mode by pressing the MODE button and then press the START button. The following

screen should appear.

Dynamixel ID

 The position of the currently connected 7 poses

 The first column on the left is the ID of the Dynamixel. The robot profile

85

 User’s Guide

information is not shown here. The next column (which we call POSE 7) shows the

values of the current angle positions of the Dynamixel units. By the numbers in

POSE7 you can see that only one Dynamixel of an ID 1 is connected.

 The figure above shows the screen for editing a single motion page. A motion

page is made of 7 poses and 64 bytes of page information. The size of one page

is 512 bytes.

Pose The pose is an instance of a motion. For

example, in the figure below, you will

need many poses to make the robot

move one side step. A motion connects

these poses smoothly.

Command The following commands are available.

 Commands related to creating poses: ON, OFF, WRITE, SET, STEP, PLAY, GO, INSERT,

MOVE, NAME, SAVE

 Commands related to editing pages: PAGE, BEFORE, NEXT, COPY, NEW

A multi-jointed robot motion can be edited using these commands. Let’s take a

look at each one.

Off This will turn off the torque of the joint.

If you input OFF, the joint angle value

for POSE7 will disappear (see figure on

the right). You can now move this joint

by hand.

On After moving the joint to the desired

position, type the ON command to see

the joint angle value at POSE7. The

torque will be back on, locking its joint

position.

Torque Off state with OFF instruction TIP You can list several Dynamixel IDs after

an OFF, ON command to turn them on or

off all at once.

86

 User’s Guide

Write After setting the joint angles to the desired positions, type in the WRITE command.

The joint angle values of the POSE7 will be added to the pose. Let’s make several

more poses this way.

POSE loading

 After executing the ON command After executing the WRITE command

Play We will now check the motion that

connects the inputted poses. If

you type in “play,” the motion

will be played. The poses from

POS0 to the last inputted pose will

be played. You can see where the

last inputted pose is by the Step

line.

TIP You can play another motion page

by typing in “Play [page

number].” For example, “Play 3”

will play the motion of page

number 3.

Step Line

[Playing from Pose 0 to Pose 3]

Go After playing a motion, sometimes you will want to edit it. Here, you can use the

“go” command. This command will take you to a certain pose. For example, “go

1” will make the robot move to the configuration of pose1 and the joint angle

values of POSE1 will be copied into POSE7. The Dynamixels will move at a constant

speed.

Write [pose number]

After using the GO command and edit the pose data using the OFF, ON commands,

you will want to save the new joint values of POSE7. This can be done by typing in

87

 User’s Guide

“Write [pose number].” And the joint values for POSE7 will be saved in the

specified “pose number.

Insert While editing, you will sometimes want to place the current pose (POSE7) between

two other poses. To do this, use the “insert” command. The format is “insert

[pose number].”

Delete A pose can be deleted using the “delete” command. Typing in “delete”

without a parameter will move the step line up one column. If you want to delete

a certain pose then type in “Delete [number].”

Step Sometimes during motion editing you will want to change the location of the Step

line. For example, say that you made 4 poses but you want to run only the first

two. Typing in “step 2” will move the step line to the beginning of pose 2 and

only POSE0 and POSE1 will be played.

Name With this function you can give a name to a page. This will be useful later.

Save During editing, the motion data is stored inside the CM-5’s RAM. When you are

finished creating the motion, use the save command to save the motion page to

the flash memory.

Page Type in “page [page number]” to jump to another page.

Before Moves to previous page.

Next Moves to the next page.

Note. Make sure to save the motion data before moving to another page since it will be

deleted if not saved.

Copy To copy the data of a certain page onto the current page, type in “Copy [page

number].” The copied data is not saved in the flash memory yet.

New This command will erase all the information inputted on the current page.

Next we will be learning about editing the page information. The page information

is located on the upper right corner of the screen. The following are names of

the items and are not commands. They can be edited using the “Set” command.

Speed Even though the joint values have been inputted properly, you might still not be

88

 User’s Guide

able to get the desired motion unless you set the speed between poses correctly.

You can do this by setting the value of the speed at the bottom of the screen.

The following shows how this is done.

 Move the cursor to the item that you want to set.

Press the “]” or “[“ key to increase or decrease the value of the item.

Press the “{“ or “}” key to change the magnitude.

By typing in “Set [value]” the value can be set at once.

 The method above can be used to set not only the speed but also all the other

items below.

PauseTime Sometimes you will want to pause for a short time after a pose. For example, you

might want the robot to pause for a while after it has finished doing a bowing

motion. If you give it a “pause time” value, it will pause for 7.8 msec per the set

value and then move on to the next pose. The figure above shows an example of

the robot pausing for 0.5 s (40*7.8 msec) after POSE1 is played.

Accel. Time Every time a motion is played, the joints go through a process of acceleration 　

constant velocity 　 deceleration. The acceleration time is the time of

acceleration and deceleration (ramp up time plus ramp down time). Reducing the

Pause time and Speed by poses

Page information

89

 User’s Guide

acceleration time will make the motors acceleration faster and stress on the

joints. Increasing the acceleration time might create an interval which makes it

impossible to complete a motion.

Page Speed Use this when you want to adjust the play speed of the whole page. The default

value is 32. Setting the value to 64 would be the same as doubling the speed of

each of the poses individually.

Link to Next You can set the next motion page to be executed after the current page is

finished being played. This can be done by inputting the page to be played next in

the in the “Link to Next” item. If you don’t need to play another motion page

then set the value to 0 (default value is 0). If you set the value for “Link to Next”

as the number of the current page, then playback will continue infinitely in a loop.

In this case, you can input the key stop the playback. Playback will be stopped

after the Link to Exit motion is completed.

Link to Exit During motion play, if a signal is received, the playback will end after the

executing the page defined by this. If this feature is not needed, then set its value

to 0.

Other Things to Keep in Mind

Page 0, 1 Page 0 and page 1 have special functions so it is recommended that you do not

use them.

“Are you sure?”

The “Are you sure?” message will appear in the following cases.

 When you move to another page without saving.

 When you use the “go” command with a pose that is outside of the step line.

 When you use the “new” command.

Abbreviation You can use only the first letter of the commands that are used often.

90

 User’s Guide

6-3. Walking Droid ’s Program

Now let’s build a walking droid as follows.

 When an object is sensed by center sensor, the robot will move forward.

 When handclapped, walking droid will stamp its feet corresponding to a number

of handclaps.

 When “Start” button is clicked, the robot will dance.

Let’s look at the flow chart below.

At first behavior control program does not seem to have any problems with it. But

there will be several problems when you run it as is.

The first problem is the position configuration of the humanoid robot when the

program is started. The robot could be in a pose which will make it difficult to

execute a certain motion. Thus it needs a motion to make the humanoid robot

stand straight upright.

Start

End

Center sensor value> 100 ?

Number of sound sensing event !=0

Button status = Start button ?

Execute forward motion

Repeat feet stamping motion

corresponding to the number

sound sensing event

Execute dance motion

Yes

No

Yes

No

No

Yes

91

 User’s Guide

The second problem is the number of times the sound is sensed. The starting

value for the number of sound sensing event might not be set to zero. Also, the

robot could sense its own clapping sound as a clap made by the user. If the

number of sound sensing is not set to 0, it will clap endlessly unless there is a

part of the code that will set this value to 0.

The third problem is that when making the robot execute a motion, it will be

almost impossible to set each joint value individually to create the many motions

required.

A flow chart to solve the first and second problems looks like the following.

End

Center sensor value> 100 ?

Number of sound sensing event !=0

Button status = Start button ?

Execute forward motion

Repeat feet stamping motion

corresponding to the number

sound sensing event

Execute dance motion

Start

Execute upright motion event

Number of sound sensing event 0

예

No
Number of sound sensing event 0

예

No

Number of sound sensing event 0

예

No Number of sound sensing event 0

92

93

User’s Guide

Motion Execution

 To use the motion data that was created with the motion editor, it is necessary to

use the motion execution function. The motion execution involves inputting a

motion page number of user’s choice in the “Robot Motion” item of CM-5.

When the page numbers that will be used in the motion data are managed

separately, it will be very useful when you want to create behavior control

program.

Motion Execution Standby

There will be a time when you may

want to stop behavior control

program while the particular

motion is running. For that, you

first need to know whether the

motion execution is completed. By

checking the “Robot Motion

Status,” you can find out. If the

“Robot Motion Status” is set to 0, it means that the motion execution is

completed, and if not, it will be 1.

Yes
 Robot motion status= 1 ?

No

Motion Execution Stop

There is a function that will allow forceful stop without waiting for the motion to

complete. If you put input the value of 0 in “robot motion” item, the robot will

respond very fast to external events. However, keep in mind that even if you use

motion execution stop function, you will have to wait for all current motion pages

and designated final pages to be completed. Therefore, in order to completely

end the motion, you have to use motion execution standby.

 User’s Guide

To create above program, follow the following steps.

Refer to the “Examples\Example(Walking Droid).bpg”inside the CD.

Main routine

Button reaction routine for the center reaction, handclap reaction to the sensors

94

 User’s Guide

Motion execution routine

[Upright] [Forward]

[Foot stamping] [Dancing]

Motion completion standby routine

Now it is time to generate the required motions.

If you look at the source above, you can see that the following motion is needed.

 Motion page 1: Stand straight up motion

 Motion page 2: Forward motion

 Motion page 6: Foot stamping motion

 Motion page 7: Dancing motion

The Bioloid has motion pages from 1 to 127. When you create the desired motion

onto the page and call this page from the behavior control program, the motion

will be played. We are going to learn how to create a motion in the next chapter,

but first download the provided motion onto the robot and let’s check if the

program works. To download, go to the menu bar of the behavior control program

and select maintenance and then select motion data download. Here, open and

95

 User’s Guide

download the provided “Examples\Example(Walking Droid).mtn” data. The figure

below shows how to download a motion.

After download is complete, execute the play mode by clicking a button.

Go ahead and test by handclapping and putting a hand closer to the robot’s

waist. Click once again the start button.

96

 User’s Guide

7. Building a Wireless Remote Control

Bioloid supports two types of wireless communication. With these methods, user

can control the robots remotely or allow the Bioloids to send and receive the

data between each others.

The first method involves sending data using IR (infrared rays) transmitter-

receiver function of AX-S1 and by attaching the Zigbee module ZIG-100, dedicated

Bioloid wireless device, to CM-5. With this attachment, Bioloid can communicate

via RF method.

7-1. Infrared Communication Program Using the AX-S1

IR Communication

In AX-S1, there is a transmitter-receiver built-in that allows IR communication.

Although IR communication is often used for short distance, as it is strongly

influenced by the direction and the location of its devices, users have to keep in

mind of above limitation when transmitting. As the images below show, IR can

send data in three directions, only one direction is allowed in receiving data.

IR reception direction

 IR receiver

IR transmission

direction

 IR transmitter

IR Communication H/W

It is the sensor module AX-S1, rather than the CM-5, central control device of

Bioloid, that actually handles the communication. To communicate via infrared,

you need at least two AX-S1s and two CM-5s.

CM-5 AX-S1 IR AX-S1 CM-5

97

 User’s Guide

IR Communication S/W

The result of communication between AX-S1 can be checked through behavior

control program of CM-5. That is, to control the Bioloid via IR transmission, you

need behavior control program that communicates between each other using

AX-S1.

Behavior control

program

Behavior control

program

CM-5 CM-5

AX-S1 AX-S1

Data Transmission

 As previously mentioned, AX-S1 is the one that actually handles the

communication. Following that, you have to load the data to AX-S1 in order to

send the data. The values that can be sent are between 0 and 65535. To send the

data, in behavior control program, load the “to be sent remote control data”
address of AX-S1 of ID 100. Upon doing so, AX-S1 will immediately send the data.

Data Reception

 Data reception is much more complicated than the data transmission. Simple

reason being that although data send is determined by the user, no one can

98

 User’s Guide

predict when there will be data transmission from outside source. Accordingly,

reception standby routine is required. With the proper use of flag available in AX-

S1, user can create reception standby routine. Here, if the value is 0, it means

that data did not arrive, whereas, if the value is other than 0, it indicates that

data has arrived. In behavior control program, Check the arriving new date flag .if

it is not going to be change to o should read value of remote control data

address what you received.

Example Let’s take a look at the simple example of AX-S1 transmitter-receiver function. As

below picture shows, it is simply composed of AX-S1 and CM-5. In transmitter, if

the button is pressed, it will send the data via IR, whereas in receiver, when it

receives the data, it will play the melody. Refer to the “Examples\Example(IR

receiver).bpg” and “Examples\Example(IR transmitter).bpg” inside the CD.

99

 User’s Guide

[Transmitter behavior control program]

[Receiver behavior control program]

100

 User’s Guide

7-2. Assembling RF Remote Control Using ZIG-100

Zigbee Module Zigbee, just like Bluetooth, is a frequently used PAN(Personal Area Network)

communication technology. Zigbee module ZIG-100 is a communication module of

Bioloid and as such, with its communication technology, it enables Bioloid to

transmit the data and control the robots in various ways.

CM-5 and ZIG-100

 By default CM-5, the central control device of Bioloid, does not have ZIG-100.

Thus, for the IR wireless communication between Bioloid, you need to have ZIG-

100 attach to the CM-5. In order to attach it, you need to dissemble CM-5 and

solder the ZIG-100 on Zigbee circuit board, as shown on below pictures. You need

at least two sets of CM-5s and ZIG-100 modules to send and receive data.

CM-5 ZIG-100 Wireless ZIG-100 CM-5

101

 User’s Guide

Zigbee ID ZIG-100 modules each have their own unique IDs. Following that, in order to

communicate between each others, they need to know the IDs of respective

devices. In general, with known IDs, devices can communicate one to one and

additionally, you can send broadcasting messages to all ZIG-100s. For further

details, you can check out the ZIG-100 manual.

You can change the communication mode setup through the behavior control

program.

CM-5 Setup To setup the IDs of other ZIG-100 from ZIG-100, you have to use behavior control

program. Both CM-5s must have ZIG-100 built-in and must know the unique IDs of

each others.

Additionally, both must set and save the IDs of each others through behavior

control program before communicating.

For example, let’ suppose that robot A has ID of 120 and robot B has ID of 121. For

robot A to send data to robot B, the robot A has to set and save robot B’s ID of

121. Likewise, the robot B has to set and save the ID of robot A, which is 120.

To find own ID and set the ID of others, follow the instruction below. Also refer to

“Examples\Example(Read my RF ID).bpg”and “Examples\Example[Set other RF

ID].bpg” inside the CD.

[Finding own Zigbee’s ID through the behavior control program]

Own ID cannot be changed as it is read from the ROM of ZIG-100.

102

 User’s Guide

[Setting up other Zigbee’s ID through the behavior control program]

 Zigbee ID (Decimal)

Once other Zigbee’s ID set, it is maintained even after power is turned off. As

other ID is used for simple communication, the ID can be changed accordingly by

users.

Transmitting through the behavior control program

When you are sending data through the behavior control program, you write the

value (0-65535) in “to be sent data” address. When receiving data, similar to AX-

S1, you first check the “new wireless data arrival” address. If it changes to value

other than 0, it means that new data has arrived and you can read “received

wireless data.”

Take note however that wireless communication by itself means simple

transmission of data between 0 and 65535. Thus, if you want Bioloid to receive

data and to behave accordingly, you must create behavior control program and

set the protocol.

[Sending data]

TX Data (Decimal)

103

 User’s Guide

[Receiving data]

< New wireless data flag >

-> 0: No arrived data

-> 1: Data arrived

Example

 Let’s expand what we have learned before when we created program that turn

on and off AUX LED by pressing a button. Here, let’s create a program that can

control AUX LED by wireless. Refer to “Examples\Example(IR receiver).bpg” and

“Examples\Example(IR transmitter).bpg” inside the CD.

[Sending data]

[Receiving data]

104

 User’s Guide

7-3. Walking Droid Program Controlled by RF Wireless Remote Control

Let’s apply what we have learned so far in wireless communication to making a

remote control to control the robot remotely.

Refer to “2-2-14 Walking Droid” and build hardware. Additionally, prepare by

purchasing the pair of ZIG-100(not included) and additional CM-5.

Attach ZIG-100 to CM-5

Before creating behavior control program, we have to set the IDs of ZIG-100s

accordingly. By referring to “ Examples\Example(Read my RF ID).bpg ” and

“Examples\Example[Set other RF ID].bpg” prepare ID setup beforehand. The CM-

5 of robot that receives message and CM-5 that will be used as a remote control

will each execute behavior control program.

105

 User’s Guide

Transmitter CM-5 behavior control program

 When the U button of CM-5 is pressed, it will send 1.

 When the D button of CM-5 is pressed, it will send 2.

 When the L button of CM-5 is pressed, it will send 3.

 When the R button of CM-5 is pressed, it will send 4.

 When the Start button of CM-5 is pressed, it will send 5.

The actual behavior control program is shown below. Refer to

the“Examples\Example(RF remocon of Walking Droid).bpg” inside the CD.

106

 User’s Guide

Receiver CM-5 behavior control program

 When received wireless data is 1, it will take forward motion.

 When received wireless data is 2, it will take backward motion.

 When received wireless data is 3, it will take left turn motion.

 When received wireless data is 4, it will take right turn motion.

 When received wireless data is 5, it will take dancing motion.

The actual behavior control program is shown below. Refer to

the““Examples\Example(RF control of Walking Droid).bpg” inside the CD. (Before

running, download Examples\Example(Walking Droid).mtn, motion data from the CD.

If the program did not run properly, check the Zigbee ID. Also, for

the“Examples\Example(RF control of Walking Droid).bpg,” it needs

“Examples\Example(Walking Droid).mtn”motion data, so make sure that it has

been downloaded.

107

 User’s Guide

8. Management Mode

This chapter explains about using Manage Mode. In “manage mode” you can

check the robot status and check or change the Dynamixel settings.

8-1. SETTING THE ID AND DYNAMIXEL SEARCH

Robot Terminal Run the Robot Terminal program. In the previous chapter, we have explained how

the CM-5 and the PC is connected. As we have explained comport setup in detail

in previous chapter, we will omit here.

Initial State When you execute the “manage mode” the following screen will show up in the

“Robot Terminal”.

CM-5 program version

Here you can see the number and the IDs of the connected Dynamixels. If what

appears on the screen is different from the actual configuration, check the

following.

 Do all the Dynamixel have different IDs?

 Does the communication speeds between the Dynamixels and CM-5 agree?

 Are the cables connected properly and securely?

To check the wiring, turn the power off the CM-5 and then turn it back on. Check

if the LEDs on the Dynamixels are blinking. If not, check the wiring again.

If the wires are connected properly you can check the communication speed and

find the IDs by using the SEARCH command. This will be covered later.

108

 User’s Guide

Command Format

Type in a command followed by a number (parameter). The following are some

examples.

 ID 10

 Dump

 WR 10, 1

 RD 10, 2

HELP Type in help to see the available functions in manage mode.

CID CID is the abbreviation of Control ID. This shows the ID of the Dynamixel that the

CM-5 is controlling. CID is also used as a prompt character in manage mode.

Indicates the control of Dynamixel that has the ID of 0x01

109

 User’s Guide

 To change the ID of the Dynamixel that the CM-5 controls to number 3, type in the

following commands.

 After the command above, only the Dynamixel with an ID of 0x03 will react.

Communication between the CM-5 and Dynamixel will not occur even if you run

the CID command.

ID Use the ID command when you want to change the IDs of all the connected

Dynamixels.

 Usage: ID [ID number]

 Example) ID 2 Set the connected Dynamixel’s ID to 2.

 The ID command will change the IDs of all the connected Dynamixels regardless

of the value of the CID. Therefore, when you use the ID command make sure that

there is only one Dynamixel connected to the CM-5.

When you use the ID command make sure that there is only one Dynamixel

connected to the CM-5

ID 254 Using ID number 254 will send commands to all Dynamixels. A Dynamixel will only

react to a command with its own ID or with ID 254, but it will not send back a

packet for commands sent with ID 254. ID 254 is also called the “Broadcasting

ID.”

SCAN You can find the IDs of the Dynamixels that are connected to the CM-5 by running

the SCAN command. If you type in SCAN N, the program will scan Dynamixel number

0 to N. The SCAN command will only work if the communication speed between the

CM-5 and the Dynamixels is set properly.

 Usage: Scan [number of IDs]

110

 User’s Guide

SEARCH If you are not sure if the communication speed between the CM-5 and the

Dynamixel is set properly, you can use the SEARCH command to search the

Dynamixels.

 The SEARCH command is slow and it could find duplicates if similar baud rates are

used. This is because UART communication somewhat robust against baud rate

error.

LED Sometimes you will want to check the ID of each Dynamixel connected to the CM-

5. Type in LED ID and the LED of the Dynamixel of the selected ID will blink. Type B

and N to change the ID. Typing Q will end the LED command.

When Q is typed in

When N is typed in

8-2. Other Commands

READ This command is used to read the data values in the control table of a Dynamixel.

The READ command is used as the following.

 Usage: READ [ADDRESS] [Data Length for Reading]

 The example below shows a command that reads 1 byte from Address 25 of the

Dynamixel with an ID of 1.

111

 User’s Guide

WRITE This command is used to change a data value of the control table.

The WRITE command format as the follows.

 Usage: WRITE [Address] [Data] [Data] [Data]…

 In the example below, you can verify that the LED turns on and off when 1 and 0 is

written to Address 25.

Dump This shows the control table values of the Dynamixel. The following shows the

information that is dumped. Refer to the AX-12 manual for more information about

control tables.

 Press any key to continue dump.

112

 User’s Guide

GO This command moves the Dynamixel to the specified position. The GO command is

used like the following.

 Usage: GO [Position Value] [Speed Value]

 Here, the range of parameter values is from 0 to 1023. If you take a look at the

packet, you can see that the WRITE command has been executed starting from

Address 30 which corresponds to goal position and goal speed.

PING This command does not execute any special tasks, but is used to check to see if

a Dynamixel is connected. The Dynamixel will return a packet even when it

receives a Broadcasting ID with this command.

 Usage: PING [ID]

REG_WR This command registers the command WRITE. The command is only registered; not

executed. The format is the same as the WRITE command. But it will only execute

when the ACTION command is given.

ACTION This command executes the WRITE command that is registered by REG_WR.

The example below shows the process of turning on a LED using the REG_WR

command. The LED will actually be turned on with the Action command.

 The Action command is executed with the Broadcasting ID. The REG_WR and Action

commands are useful when you want to actuate several Dynamixels starting at

the same time.

113

 User’s Guide

SYNC_WR When you want to write to several Dynamixels and if the Write Addresses are all

the same, you can use the SYNC_WR command to write to all of the Dynamixels at

once. The format of a SYNC_WR command is as follows.

 Usage: SWR [ADDRESS] [LENGTH] [ID] [DATA0] [DATA1] …[ID] [DATA0] [DATA1]…

 The following example shows how to move a Dynamixel of ID = 0 to position

512(0x200) at a speed of 80(0x80) and a Dynamixel of ID = 1 to position 272(0x110)

at a speed of 80(0x80). SYNC_WR is a broadcasting command.

Addr,Length Data of ID=0 Date of ID=1

Broadcasting ID

Baud This command is used to change the baud rate of the CM-5 Dynamixel controlling

UART. The baud rate is calculated using the following equation.

 Speed (BPS) = 2000000/(Parameter Value + 1)

Parameter Values for Important Baud Rates

Parameter Set BPS Goal BPS Error

1 1000000.0 1000000.0 0.000%
3 500000.0 500000.0 0.000%
4 400000.0 400000.0 0.000%
7 250000.0 250000.0 0.000%
9 200000.0 200000.0 0.000%
16 117647.1 115200.0 -2.124%
34 57142.9 57600.0 0.794%
103 19230.8 19200.0 -0.160%
207 9615.4 9600.0 -0.160%

 The Baud command changes the baud rate of the CM-5 itself and all the

Dynamixels that are connected to the CM-5.

 Usage: BAUD [Calculated parameter value]]

Note A maximum Baud Rate error of 3% is within the tolerance of UART communication.

114

 User’s Guide

RESET The RESET command will change all the settings of the Dynamixel back to the

factory initial settings.

Usage: reset [ID]

RESET명령은 가급적이면 사용하지 않기 바란다.

H The H command will send the numbers that are typed into the Robot Terminal as

text to the Dynamixels in binary format. The H command is useful when testing the

packet communication protocol.

 Usage: H [Parameter] [Parameter] [Parameter]…

So far we have learned the functions of several manage mode commands.

115

 User’s Guide

9. Information for Advanced Users

This chapter is for advanced users who have experience with microprocessors. In

order to understand the following material you will need to have knowledge of

hexadecimal, binary numbers, and ASCII code. Finally, we briefly explain how to

control the CM-5 using the C language.

9-1. Boot Loader

Boot Loader When power is applied to the CM-5 unit, the “CM Boot Loader” program in Reset

Vector is executed. The “CM Boot Loader” program does not have as many

functions as a PC operating system, but it has the following basic features:

uploading and executing user created programs to the CM-5 unit memory,

verifying the data in the memory, and downloading programs back to a PC. All

numbers are treated in hexadecimal.

Caution If you do not fully understand the system, do not use the Boot Loader.

Execution In the Robot Terminal, press and hold the # key and press the mode switch to go

into the Boot Loader.

 The figure below shows the Boot Loader screen. At this point, type “Help” and

press Enter, and the following message will appear.

116

 User’s Guide

 This is a summary of the functions of the Boot Loader. Let’s take a closer look

at them, one at a time.

Download Let’s learn how to download a provided Firmware or a program you have created

onto the CM-5 unit. Let’s try downloading a program called Bioloid.hex.

 Type in the command “load.” The following message should appear. This

message indicates that the data is ready to be written to address 0.

 Next, select “Transmit file” in the “Files” menu from the Robot Terminal

program as shown below. It is recommended to check the “Add bytesum” menu

item in the “Setup” menu as shown below.

Selecting a File for Transmission

 Select “Examples\ROM file\Bioloid_VerXXX.hex” of the CD as the file to be transmitted.
The selected file will be transmitted to the CM-5 through the serial cable.

Transmission Complete

 When the transmission is finished, a “Checksum:xx-xx” message will appear on

the screen as shown below. If the two numbers match, this indicates that there

were no errors during the transmission.

117

 User’s Guide

 If you press the mode change button, the downloaded program will be executed..

Memory Dump The CM-5 unit not only has 128 Kbytes of flash memory but also 4 Kbytes of RAM

and 4 Kbytes EEPROM. There is a function in the CM-5 boot loader where you can

check the contents in these memory spaces. Type in the memory type as the

command followed by the address. The following figure is an example.

118

 User’s Guide

9-2. USING THE C PROGRAM LANGUAGE

The program for the Bioloid was programmed in C and loaded with the Boot

Loader. In order to write such a program, you will need to know how to program

in C and you should also have some CPU hardware background. This is beyond the

scope of this manual, thus we recommend you refer to other references for such

information.

In this section we will learn about the Boot Loader and what part of the memory it

is located at. We will also learn how much of the memory a user can use for

programming.

Memory Map The CM-5 uses a CPU called the Atmega128. This CPU has 128 Kbytes of flash

memory. The CM-5 divides the flash memory into several sections, as shown in

the table below.

Address Item Function

0X00000
~

0X0BFFF

Bioloid
program

Location of the program that operates the
Bioloid

0X0A000
~

0X0DFFF
User area

Location of the user made behavior control
program

0X0E000
~

0X1DFFF
Motion Data Area for storing motion data for the robot

0X1E000
~

0X1FFFF
Boot Loader

Location of the “Boot Loader” program
for verifying the download and memory
status, etc.

 When the power is applied, the “Boot Loader” located at address 0x1E000

executes. The file Bioloid_VerXXX.hex is loaded on to the 48 Kbyte user area,

starting at Address 0X00000. You can see that the executable file of the user

created C program has to be loaded at address of 0.

There is a compiler called AVR-GCC for creating the C program that you can use

for free. This will be explained in more detail in chapter 9-3.

TIP Learning how to use C to operate the CM-5 is learning about microprocessors.

Studying robotics and studying the microprocessor are two different things.

Starting from using the IN, OUT commands in the microprocessor may not be an

efficient way to operate a robot. A robot should be considered as a system, not

from the level of a device or a board. When we make a homepage with a PC we

119

 User’s Guide

usually don’t use ASM or C directly. We rather use a higher level tool to do the

job. Similar to this, it would be more appropriate to use a higher level tool to

concentrate more on the higher level behavior control of the robot.

9-3. Compiling(Compile)

 This section talks about how to compile a CM-5 program. Before going through

this section, we recommend studying the AX-12 manual.

Selecting a Compiler

 The CPU on the CM-5 unit is the Atmega128 of the AVR Series from Atmel. There

are many different C compilers available for the Atmega128 but their prices are

generally very high. One the other hand, a global organization called GNU is

distributing their compiler called GCC for free of charge. For this reason, many

research labs and institutions are using this compiler instead. The CM-5 unit also

uses the AVR GCC compiler.

Compiler and Editor

 Windows OS users are familiar with compilers that have an editor function built in.

But for compilers that run on text based OSes such as Linux, they usually have a

separate compiler and an editor. The GCC is a compiler based on the command

line interface and thus does not have a built in editor. Therefore, users have to

use a separate editor to develop a program. The AVR-Edit and the WIN-AVR are

two editors for GCC that are popular. We will be using the WIN-AVR editor in this

tutorial. This editor runs the compiler by internally calling the AVR GCC.

Installing the Compiler

 Let’s install and run the AVR GCC Editor, Win-AVR. Win-AVR can be downloaded

from the Internet and you can find a link from the website www.robotis.com. Since

Win-AVR already includes the AVR GCC, the user only needs to install the Win-AVR.

The user can select the following menu after the installation is complete.

120

 User’s Guide

Win AVR The Win-AVR editor runs the GCC compiler by calling the AVR GCC internally. From

the Win-AVR menu, select Programmer’s Notepad [Win AVR]. The following

screen will appear.

Project File When writing a large program, it is helpful to structure the program by dividing the

source file into a number of smaller files by its contents. The Project File is a

higher-level file that contains the list of the entire source files associated with

the program that is being developed and includes all the compile options. Open a

new Project File as shown below and give it any name as you wish. Here, the

project is named “Simple.” Select “Project” from the “New” menu item

under the “File” menu.

121

 User’s Guide

C Source File Next, we open the C source code file which is a lower-level file. Select “C/C++”

from the “New” menu item under the “File” menu.

 To assign a name, select “Save As…” from the “File” menu and give it any

name as you wish. Here, the C source file is named “SimpleMain.c.”

 Next, the source file named “SimpleMain.c” needs to be added to the project

file named “simple. On the left side of the project window, right click on

“simple” then click “Add Files” to select “SimpleMain.c”

 Now, a project named “simple” is created which includes a source file called

“SimpleMain.c.”

122

 User’s Guide

Main() Type the following in the “SimpleMain.c” source code.

 void main(void)

 {

 }

 The above program has no content and is in the form of the most basic structure

of a C source code. Now the source code is completed, the next step is to

compile it. To do so, the user has to select the necessary options for compiling it.

Makefile The Makefile contains the information for the compile options. Sometimes the

project file may contain the information for these options. However, since the

Win-VAR does not have an internal compiler, it needs a separate Makefile for the

GCC. Just like creating a project, the Makefile needs to be created only once and

then modified as needed.

Location of the Makefile

The Makefile has to be in the same directory (folder location) as the project file

and the main source file that contains the Main function. The name of the file has

to be Makefile without an extension and cannot be changed. Thus, the files

“Makefile,” “Simple. pnproj,” and “SimpleMain.c” have to be in the same

folder.

Editing the Makefile

 Makefile contains information on opening and compiling the source file, and the

name of the executable file. Makefile also contains other information but the

important information that the user needs to deal with are the name of the

resultant file, the name of the source file and its directory. This concept will

become clearer once we go through the following tutorial. First, from the CD that

came with the CM-5 unit, copy the Examples\CM-5\makefile to the current

working directory folder.

Running the mfile

 As the picture shown on the right, run the

“mfile” program in Win-AVR. This file only

contains the editing function for Makefile.

123

 User’s Guide

 First, open the file that you want to edit. There are two ways of editing the

Makefile; the user can directly edit the contents of the Makefile, or the user can

use the menu to edit it. To edit it using the menu, the user selects the

“Makefile” menu on the right to change the options while the “mfile” is

running. To directly edit the contents of the Makefile, the user selects the

“Enable Editing of Makefile” under the “Makefile” menu to change options by

using the keyboard..

Editing Using the Menu

 When a new project is created, two sections have to be modified in the

Makefile; one is the main file name section, and the other is the C/C++ Source

file(s) section. First set the name of the main file name to “simple.” This is

used for the file names the compiler creates. Source codes can be added in

the C/C++ Source file section. Edit the two sections of the Makefile as shown

below.

Modified items

 The Makefile can be edited by using the “Notepad” or any text editor.

Summary of Makefile

 The concept of Makefile can be tricky for those who use GCC for the first. The

Makefile can be summarized with the following two concepts..

1. The Makefile has to be located in the same folder as the project file and

source file. The name of the Makefile cannot be changed.

2. Within the Makefile, the source file section (SRC) and the resultant file

section (TARGET) needs to be modified as needed.

124

 User’s Guide

Executing Compile

 Select “Make All” from the “Tools” menu of the Programmers Notepad 2

[WinAVR].

 The compile result message will appear at the bottom of the output window. If the

compile was successful with no error, the “Errors: none” message will appear.

Simple.hex Download

 Now let’s verify and download the file “simple.hex.” Use the Boot Loader to

download the program. If you run it nothing will happen because the file does not

contain any information.

125

 User’s Guide

9-4. Example.c

Example.c “Example.c” contains various routines for the CM-5 to directly control the

Dynamixel actuators. Using these routines, one can easily develop a program for

controlling them. Select “Open Project(s)” from the “File” menu on the MinAVR

Programmers Notepad.

Project Open Open the “example.pnproj” project file in the Example folder.

126

 User’s Guide

Files Open Double-click the “Example.c” on the left and the contents of it appear on the

screen.

Compile Select “Make All” from the “Tools” menu to compile. The output after the

compile should look like the following.

127

 User’s Guide

Download Now, let’s use the Robot Terminal to download “example.hex” to the CM-5 unit.

Please refer to Chapter 2 for downloading instructions. Use the “Go” command

to execute “example.hex.” The screen shot of this is shown below. Pressing a

key will make it proceed to the next example.

 Example 1 sends the “Ping” command to the Dynamixel actuators (ID from 0 to

9) and checks if there are any replies. The Baud rate for the CM-5 is set to

57,600 bps. From the results shown here, you can see that one Dynamixel

actuator with the ID of 1 is connected to the CM-5 unit.

 Example 2 demonstrates the use of the “Read” command. It reads the data

from Address 2 of the Control Table of the Dynamixel actuator with the ID of 1.

The data from Address 2 is the Firmware version and the results show that it

currently has a firmware version of 0x0F. Please refer to the Dynamixel manual

for information about the Control Table and for the structure of the packets

Example 3 turns on the LED of a Dynamixel actuator by writing 1 to address 0x19

of the Control Table. All actions for the Dynamixel actuators can be activated in

this way by writing data to the corresponding address in the Control Table.

 Example 4 turns off the LED of a Dynamixel actuator by writing 0 to address 0x19

of the Control Table.

128

 User’s Guide

 Example 5 reads all the data from the Control Table by sending a packet to read

data from address 0 to 0x31. The figure above shows the list of these 0x37

packets in the [Address]: Data form.

 Example 6 demonstrates the command for moving the output of a Dynamixel

actuator to a specified position. This is the most often used command. The Goal

Position value of 0x200 (corresponding to the position at 180 degree) is written

to address 0x1e of the Control Table. The Goal Speed value of 0x100 is written to

address 0x20 of the Control Table as well. Note that both values (Goal Position

and Goal Speed) can be written at the same time using only one packet.

 Example 7 and Example 8 each demonstrate the command for moving the output

of a Dynamixel actuator to a specified position, and they follow the same method

as explain in Example 6.

 The last example (Example 9) turns off the torque of the Dynamixel actuator by

 transmitting a packet to write a 0 to address 0x18 (address for Torque Enable) of

the Control Table.

129

 User’s Guide

Example.c

/*

 * The Example of Dynamixel Evaluation with Atmega128

 * Date : 2005.7.11

 * Author : BS KIM

 */

/*

 * included files

 */

#define ENABLE_BIT_DEFINITIONS

//#include <io.h>

#include <inttypes.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#define cbi(REG8,BITNUM) REG8 &= ~(_BV(BITNUM))

#define sbi(REG8,BITNUM) REG8 |= _BV(BITNUM)

typedef unsigned char byte;

typedef unsigned int word;

#define ON 1

#define OFF 0

#define _ON 0

#define _OFF 1

//--- Control Table Address ---

//EEPROM AREA

#define P_MODEL_NUMBER_L 0

#define P_MODOEL_NUMBER_H 1

#define P_VERSION 2

#define P_ID 3

#define P_BAUD_RATE 4

#define P_RETURN_DELAY_TIME 5

#define P_CW_ANGLE_LIMIT_L 6

#define P_CW_ANGLE_LIMIT_H 7

#define P_CCW_ANGLE_LIMIT_L 8

#define P_CCW_ANGLE_LIMIT_H 9

#define P_SYSTEM_DATA2 10

#define P_LIMIT_TEMPERATURE 11

#define P_DOWN_LIMIT_VOLTAGE 12

#define P_UP_LIMIT_VOLTAGE 13

#define P_MAX_TORQUE_L 14

#define P_MAX_TORQUE_H 15

#define P_RETURN_LEVEL 16

#define P_ALARM_LED 17

#define P_ALARM_SHUTDOWN 18

#define P_OPERATING_MODE 19

#define P_DOWN_CALIBRATION_L 20

#define P_DOWN_CALIBRATION_H 21

#define P_UP_CALIBRATION_L 22

#define P_UP_CALIBRATION_H 23

#define P_TORQUE_ENABLE (24)

#define P_LED (25)

#define P_CW_COMPLIANCE_MARGIN (26)

#define P_CCW_COMPLIANCE_MARGIN (27)

#define P_CW_COMPLIANCE_SLOPE (28)

#define P_CCW_COMPLIANCE_SLOPE (29)

#define P_GOAL_POSITION_L (30)

#define P_GOAL_POSITION_H (31)

#define P_GOAL_SPEED_L (32)

#define P_GOAL_SPEED_H (33)

#define P_TORQUE_LIMIT_L (34)

#define P_TORQUE_LIMIT_H (35)

#define P_PRESENT_POSITION_L (36)

#define P_PRESENT_POSITION_H (37)

#define P_PRESENT_SPEED_L (38)

#define P_PRESENT_SPEED_H (39)

#define P_PRESENT_LOAD_L (40)

#define P_PRESENT_LOAD_H (41)

#define P_PRESENT_VOLTAGE (42)

#define P_PRESENT_TEMPERATURE (43)

#define P_REGISTERED_INSTRUCTION (44)

#define P_PAUSE_TIME (45)

#define P_MOVING (46)

#define P_LOCK (47)

#define P_PUNCH_L (48)

#define P_PUNCH_H (49)

//--- Instruction ---

#define INST_PING 0x01

#define INST_READ 0x02

#define INST_WRITE 0x03

#define INST_REG_WRITE 0x04

#define INST_ACTION 0x05

#define INST_RESET 0x06

#define INST_DIGITAL_RESET 0x07

#define INST_SYSTEM_READ 0x0C

#define INST_SYSTEM_WRITE 0x0D

#define INST_SYNC_WRITE 0x83

#define INST_SYNC_REG_WRITE 0x84

#define CLEAR_BUFFER gbRxBufferReadPointer = gbRxBufferWritePointer

#define DEFAULT_RETURN_PACKET_SIZE 6

#define BROADCASTING_ID 0xfe

#define TxD8 TxD81

#define RxD8 RxD81

//Hardware Dependent Item

#define DEFAULT_BAUD_RATE 34 //57600bps at 16MHz

////// For CM-5

#define RS485_TXD PORTE &= ~_BV(PE3),PORTE |= _BV(PE2)

//_485_DIRECTION = 1

#define RS485_RXD PORTE &= ~_BV(PE2),PORTE |= _BV(PE3)

//PORT_485_DIRECTION = 0

/*

////// For CM-2

#define RS485_TXD PORTE |= _BV(PE2); //_485_DIRECTION = 1

#define RS485_RXD PORTE &= ~_BV(PE2);//PORT_485_DIRECTION = 0

*/

//#define TXD0_FINISH UCSR0A,6 //This bit is for checking TxD

Buffer in CPU is empty or not.

//#define TXD1_FINISH UCSR1A,6

#define SET_TxD0_FINISH sbi(UCSR0A,6)

#define RESET_TXD0_FINISH cbi(UCSR0A,6)

#define CHECK_TXD0_FINISH bit_is_set(UCSR0A,6)

#define SET_TxD1_FINISH sbi(UCSR1A,6)

#define RESET_TXD1_FINISH cbi(UCSR1A,6)

#define CHECK_TXD1_FINISH bit_is_set(UCSR1A,6)

#define RX_INTERRUPT 0x01

#define TX_INTERRUPT 0x02

#define OVERFLOW_INTERRUPT 0x01

#define SERIAL_PORT0 0

#define SERIAL_PORT1 1

#define BIT_RS485_DIRECTION0 0x08 //Port E

#define BIT_RS485_DIRECTION1 0x04 //Port E

#define BIT_ZIGBEE_RESET PD4 //out : default 1

//PORTD

#define BIT_ENABLE_RXD_LINK_PC PD5 //out : default 1

#define BIT_ENABLE_RXD_LINK_ZIGBEE PD6 //out : default 0

#define BIT_LINK_PLUGIN PD7 //in, no pull up

void TxD81(byte bTxdData);

void TxD80(byte bTxdData);

130

 User’s Guide

void TxDString(byte *bData);

void TxD8Hex(byte bSentData);

void TxD32Dec(long lLong);

byte RxD81(void);

void MiliSec(word wDelayTime);

void PortInitialize(void);

void SerialInitialize(byte bPort, byte bBaudrate, byte bInterrupt);

byte TxPacket(byte bID, byte bInstruction, byte bParameterLength);

byte RxPacket(byte bRxLength);

void PrintBuffer(byte *bpPrintBuffer, byte bLength);

// --- Gloval Variable Number ---

volatile byte gbpRxInterruptBuffer[256];

byte gbpParameter[128];

byte gbRxBufferReadPointer;

byte gbpRxBuffer[128];

byte gbpTxBuffer[128];

volatile byte gbRxBufferWritePointer;

int main(void)

{

 byte bCount,bID, bTxPacketLength,bRxPacketLength;

 PortInitialize(); //Port In/Out Direction Definition

 RS485_RXD; //Set RS485 Direction to Input State.

SerialInitialize(SERIAL_PORT0,DEFAULT_BAUD_RAT

E,RX_INTERRUPT);//RS485

Initializing(RxInterrupt)

 SerialInitialize(SERIAL_PORT1,DEFAULT_BAUD_RATE,0); //RS232

Initializing(None Interrupt)

 gbRxBufferReadPointer = gbRxBufferWritePointer = 0; //RS485

RxBuffer Clearing.

 sei(); //Enable Interrupt -- Compiler Function

 TxDString("\r\n [The Example of Dynamixel Evaluation with

ATmega128,GCC-AVR]");

//Dynamixel Communication Function Execution Step.

// Step 1. Parameter Setting (gbpParameter[]). In case of no

parameter instruction(Ex. INST_PING), this

step is not needed.

// Step 2. TxPacket(ID,INSTRUCTION,LengthOfParameter); --Total

TxPacket Length is returned

// Step 3. RxPacket(ExpectedReturnPacketLength); -- Real RxPacket

Length is returned

// Step 4 PrintBuffer(BufferStartPointer,LengthForPrinting);

 bID = 1;

 TxDString("\r\n\n Example 1. Scanning Dynamixels(0~9). -- Any Key

to Continue."); RxD8();

 for(bCount = 0; bCount < 0x0A; bCount++)

 {

 bTxPacketLength = TxPacket(bCount,INST_PING,0);

 bRxPacketLength = RxPacket(255);

 TxDString("\r\n TxD:");

PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString(", RxD:");

PrintBuffer(gbpRxBuffer,bRxPacketLength);

 if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE)

 {

 TxDString(" Found!! ID:");TxD8Hex(bCount);

 bID = bCount;

 }

 }

 TxDString("\r\n\n Example 2. Read Firmware Version. -- Any Key to

Continue."); RxD8();

 gbpParameter[0] = P_VERSION; //Address of Firmware Version

 gbpParameter[1] = 1; //Read Length

 bTxPacketLength = TxPacket(bID,INST_READ,2);

 bRxPacketLength =

RxPacket(DEFAULT_RETURN_PACKET_SIZE+gbpParamet

er[1]);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1])

 {

 TxDString("\r\n Return Error : ");TxD8Hex(gbpRxBuffer[4]);

 TxDString("\r\n Firmware Version : ");TxD8Hex(gbpRxBuffer[5]);

 }

 TxDString("\r\n\n Example 3. LED ON -- Any Key to Continue.");

RxD8();

 gbpParameter[0] = P_LED; //Address of LED

 gbpParameter[1] = 1; //Writing Data

 bTxPacketLength = TxPacket(bID,INST_WRITE,2);

 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 4. LED OFF -- Any Key to Continue.");

RxD8();

 gbpParameter[0] = P_LED; //Address of LED

 gbpParameter[1] = 0; //Writing Data

 bTxPacketLength = TxPacket(bID,INST_WRITE,2);

 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 5. Read Control Table. -- Any Key to

Continue."); RxD8();

 gbpParameter[0] = 0; //Reading Address

 gbpParameter[1] = 49; //Read Length

 bTxPacketLength = TxPacket(bID,INST_READ,2);

 bRxPacketLength =

RxPacket(DEFAULT_RETURN_PACKET_SIZE+gbpParamet

er[1]);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1])

 {

 TxDString("\r\n");

 for(bCount = 0; bCount < 49; bCount++)

 {

 TxD8('[');TxD8Hex(bCount);TxDString("]:");

TxD8Hex(gbpRxBuffer[bCount+5]);TxD8(' ');

 }

 }

 TxDString("\r\n\n Example 6. Go 0x200 with Speed 0x100 -- Any Key

to Continue."); RxD8();

 gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version

 gbpParameter[1] = 0x00; //Writing Data P_GOAL_POSITION_L

 gbpParameter[2] = 0x02; //Writing Data P_GOAL_POSITION_H

 gbpParameter[3] = 0x00; //Writing Data P_GOAL_SPEED_L

 gbpParameter[4] = 0x01; //Writing Data P_GOAL_SPEED_H

 bTxPacketLength = TxPacket(bID,INST_WRITE,5);

 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 7. Go 0x00 with Speed 0x40 -- Any Key to

Continue."); RxD8();

 gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version

 gbpParameter[1] = 0x00; //Writing Data P_GOAL_POSITION_L

 gbpParameter[2] = 0x00; //Writing Data P_GOAL_POSITION_H

 gbpParameter[3] = 0x40; //Writing Data P_GOAL_SPEED_L

 gbpParameter[4] = 0x00; //Writing Data P_GOAL_SPEED_H

 bTxPacketLength = TxPacket(bID,INST_WRITE,5);

 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 8. Go 0x3ff with Speed 0x3ff -- Any Key

to Continue."); RxD8();

131

 User’s Guide

 gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version

 gbpParameter[1] = 0xff; //Writing Data P_GOAL_POSITION_L

 gbpParameter[2] = 0x03; //Writing Data P_GOAL_POSITION_H

 gbpParameter[3] = 0xff; //Writing Data P_GOAL_SPEED_L

 gbpParameter[4] = 0x03; //Writing Data P_GOAL_SPEED_H

 bTxPacketLength = TxPacket(bID,INST_WRITE,5);

 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 9. Torque Off -- Any Key to Continue.");

RxD8();

 gbpParameter[0] = P_TORQUE_ENABLE; //Address of LED

 gbpParameter[1] = 0; //Writing Data

 bTxPacketLength = TxPacket(bID,INST_WRITE,2);

 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);

 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n End. Push reset button for repeat");

 while(1);

}

void PortInitialize(void)

{

 DDRA = DDRB = DDRC = DDRD = DDRE = DDRF = 0; //Set all port to

input direction first.

 PORTB = PORTC = PORTD = PORTE = PORTF = PORTG = 0x00; //PortData

initialize to 0

 cbi(SFIOR,2); //All Port Pull Up ready

 DDRE |= (BIT_RS485_DIRECTION0|BIT_RS485_DIRECTION1); //set output

the bit RS485direction

 DDRD |=

(BIT_ZIGBEE_RESET|BIT_ENABLE_RXD_LINK_PC|BIT_E

NABLE_RXD_LINK_ZIGBEE);

 PORTD &= ~_BV(BIT_LINK_PLUGIN); // no pull up

 PORTD |= _BV(BIT_ZIGBEE_RESET);

 PORTD |= _BV(BIT_ENABLE_RXD_LINK_PC);

 PORTD |= _BV(BIT_ENABLE_RXD_LINK_ZIGBEE);

}

/*

TxPacket() send data to RS485.

TxPacket() needs 3 parameter; ID of Dynamixel, Instruction byte,

Length of parameters.

TxPacket() return length of Return packet from Dynamixel.

*/

byte TxPacket(byte bID, byte bInstruction, byte bParameterLength)

{

 byte bCount,bCheckSum,bPacketLength;

 gbpTxBuffer[0] = 0xff;

 gbpTxBuffer[1] = 0xff;

 gbpTxBuffer[2] = bID;

 gbpTxBuffer[3] = bParameterLength+2;

//Length(Paramter,Instruction,Checksum)

 gbpTxBuffer[4] = bInstruction;

 for(bCount = 0; bCount < bParameterLength; bCount++)

 {

 gbpTxBuffer[bCount+5] = gbpParameter[bCount];

 }

 bCheckSum = 0;

 bPacketLength = bParameterLength+4+2;

 for(bCount = 2; bCount < bPacketLength-1; bCount++) //except

0xff,checksum

 {

 bCheckSum += gbpTxBuffer[bCount];

 }

 gbpTxBuffer[bCount] = ~bCheckSum; //Writing Checksum with Bit

Inversion

 RS485_TXD;

 for(bCount = 0; bCount < bPacketLength; bCount++)

 {

 sbi(UCSR0A,6);//SET_TXD0_FINISH;

 TxD80(gbpTxBuffer[bCount]);

 }

 while(!CHECK_TXD0_FINISH); //Wait until TXD Shift register empty

 RS485_RXD;

 return(bPacketLength);

}

/*

RxPacket() read data from buffer.

RxPacket() need a Parameter; Total length of Return Packet.

RxPacket() return Length of Return Packet.

*/

byte RxPacket(byte bRxPacketLength)

{

#define RX_TIMEOUT_COUNT2 3000L

#define RX_TIMEOUT_COUNT1 (RX_TIMEOUT_COUNT2*10L)

 unsigned long ulCounter;

 byte bCount, bLength, bChecksum;

 byte bTimeout;

 bTimeout = 0;

 for(bCount = 0; bCount < bRxPacketLength; bCount++)

 {

 ulCounter = 0;

 while(gbRxBufferReadPointer == gbRxBufferWritePointer)

 {

 if(ulCounter++ > RX_TIMEOUT_COUNT1)

 {

 bTimeout = 1;

 break;

 }

 }

 if(bTimeout) break;

 gbpRxBuffer[bCount] =

gbpRxInterruptBuffer[gbRxBufferReadPointer++];

 }

 bLength = bCount;

 bChecksum = 0;

 if(gbpTxBuffer[2] != BROADCASTING_ID)

 {

 if(bTimeout && bRxPacketLength != 255)

 {

 TxDString("\r\n [Error:RxD Timeout]");

 CLEAR_BUFFER;

 }

 if(bLength > 3) //checking is available.

 {

 if(gbpRxBuffer[0] != 0xff || gbpRxBuffer[1] != 0xff)

 {

 TxDString("\r\n [Error:Wrong Header]");

 CLEAR_BUFFER;

 return 0;

 }

 if(gbpRxBuffer[2] != gbpTxBuffer[2])

 {

 TxDString("\r\n [Error:TxID != RxID]");

 CLEAR_BUFFER;

 return 0;

 }

 if(gbpRxBuffer[3] != bLength-4)

 {

 TxDString("\r\n [Error:Wrong Length]");

 CLEAR_BUFFER;

 return 0;

 }

 for(bCount = 2; bCount < bLength; bCount++) bChecksum +=

gbpRxBuffer[bCount];

 if(bChecksum != 0xff)

132

 User’s Guide

 {

 TxDString("\r\n [Error:Wrong CheckSum]");

 CLEAR_BUFFER;

 return 0;

 }

 }

 }

 return bLength;

}

/*

PrintBuffer() print data in Hex code.

PrintBuffer() needs two parameter; name of Pointer(gbpTxBuffer,

gbpRxBuffer)

*/

void PrintBuffer(byte *bpPrintBuffer, byte bLength)

{

 byte bCount;

 for(bCount = 0; bCount < bLength; bCount++)

 {

 TxD8Hex(bpPrintBuffer[bCount]);

 TxD8(' ');

 }

 TxDString("(LEN:");TxD8Hex(bLength);TxD8(')');

}

/*

Print value of Baud Rate.

*/

void PrintBaudrate(void)

{

 TxDString("\r\n

RS232:");TxD32Dec((16000000L/8L)/((long)UBRR1L

+1L)); TxDString(" BPS,");

 TxDString(" RS485:");TxD32Dec((16000000L/8L)/((long)UBRR0L+1L));

TxDString(" BPS");

}

/*Hardware Dependent Item*/

#define TXD1_READY bit_is_set(UCSR1A,5)

//(UCSR1A_Bit5)

#define TXD1_DATA (UDR1)

#define RXD1_READY bit_is_set(UCSR1A,7)

#define RXD1_DATA (UDR1)

#define TXD0_READY bit_is_set(UCSR0A,5)

#define TXD0_DATA (UDR0)

#define RXD0_READY bit_is_set(UCSR0A,7)

#define RXD0_DATA (UDR0)

/*

SerialInitialize() set Serial Port to initial state.

Vide Mega128 Data sheet about Setting bit of register.

SerialInitialize() needs port, Baud rate, Interrupt value.

*/

void SerialInitialize(byte bPort, byte bBaudrate, byte bInterrupt)

{

 if(bPort == SERIAL_PORT0)

 {

 UBRR0H = 0; UBRR0L = bBaudrate;

 UCSR0A = 0x02; UCSR0B = 0x18;

 if(bInterrupt&RX_INTERRUPT) sbi(UCSR0B,7); // RxD interrupt

enable

 UCSR0C = 0x06; UDR0 = 0xFF;

 sbi(UCSR0A,6);//SET_TXD0_FINISH; // Note. set 1, then 0 is read

 }

 else if(bPort == SERIAL_PORT1)

 {

 UBRR1H = 0; UBRR1L = bBaudrate;

 UCSR1A = 0x02; UCSR1B = 0x18;

 if(bInterrupt&RX_INTERRUPT) sbi(UCSR1B,7); // RxD interrupt

enable

 UCSR1C = 0x06; UDR1 = 0xFF;

 sbi(UCSR1A,6);//SET_TXD1_FINISH; // Note. set 1, then 0 is read

 }

}

/*

TxD8Hex() print data seperatly.

ex> 0x1a -> '1' 'a'.

*/

void TxD8Hex(byte bSentData)

{

 byte bTmp;

 bTmp =((byte)(bSentData>>4)&0x0f) + (byte)'0';

 if(bTmp > '9') bTmp += 7;

 TxD8(bTmp);

 bTmp =(byte)(bSentData & 0x0f) + (byte)'0';

 if(bTmp > '9') bTmp += 7;

 TxD8(bTmp);

}

/*

TxD80() send data to USART 0.

*/

void TxD80(byte bTxdData)

{

 while(!TXD0_READY);

 TXD0_DATA = bTxdData;

}

/*

TXD81() send data to USART 1.

*/

void TxD81(byte bTxdData)

{

 while(!TXD1_READY);

 TXD1_DATA = bTxdData;

}

/*

TXD32Dex() change data to decimal number system

*/

void TxD32Dec(long lLong)

{

 byte bCount, bPrinted;

 long lTmp,lDigit;

 bPrinted = 0;

 if(lLong < 0)

 {

 lLong = -lLong;

 TxD8('-');

 }

 lDigit = 1000000000L;

 for(bCount = 0; bCount < 9; bCount++)

 {

 lTmp = (byte)(lLong/lDigit);

 if(lTmp)

 {

 TxD8(((byte)lTmp)+'0');

 bPrinted = 1;

 }

 else if(bPrinted) TxD8(((byte)lTmp)+'0');

 lLong -= ((long)lTmp)*lDigit;

 lDigit = lDigit/10;

 }

 lTmp = (byte)(lLong/lDigit);

 /*if(lTmp)*/ TxD8(((byte)lTmp)+'0');

}

/*

TxDString() prints data in ACSII code.

*/

void TxDString(byte *bData)

133

 User’s Guide

{ while(!RXD1_READY);

 while(*bData) return(RXD1_DATA);

 { }

 TxD8(*bData++);

 } /*

} SIGNAL() UART0 Rx Interrupt - write data to buffer

 */

/* SIGNAL (SIG_UART0_RECV)

RxD81() read data from UART1. {

RxD81() return Read data. gbpRxInterruptBuffer[(gbRxBufferWritePointer++)] = RXD0_DATA;

*/ }

 byte RxD81(void)

{

134

 User’s Guide

10. Bioloid Program Update

This chapter is about the Bioloid program update. We are going to introduce a

way to maintain Bioloid in latest version by showing how to update firmware for

CM-5, main controller, and Dynamixel AX-12. We recommend that you visit Robotis

site, www.robotis.com, and download the latest version.

10-1. CM-5 Program Update

 CM-5 program is updated through behavior control programmer. Follow the

process below to update to the latest version.

Step 1 As shown below, connect to the PC and CM-5 and turn on the power.

 Connect to the CM-5

Connect to the PC

Step 2 Execute the behavior control programmer.

135

http://www.robotis.com/

 User’s Guide

Step 3 From “Manage” menu, select”CM-5 update” as shown below.

Step 4 If you see “Can not connect to CM-5!”message, set “Com port” properly and

click “CM-5 connect” button.

Step 5 After connection, click “Download” button.

136

 User’s Guide

Step 6 Select CM-5 program file.

Go to Robotis homepage, www.robotis.com and download the latest version. We

recommend that you periodically check out the homepage for the latest updates.

Step 7 You will see the update progress bar.

 While updating make sure that CM-5 power is not turned off.

137

http://www.robotis.com/

 User’s Guide

Step 8 If update is successful, you will get the message indicating so, if not, start once

again from the beginning. IF CM-5 does not operate properly as a result of update

problem, refer to the“9-1. Boot Loader of “9. Information for Advanced Users

and update it manually.

138

 User’s Guide

10-2. Dynamixel AX-12 Program Update

AX-12 program update is a function that was added from the 1.26 version

of“Behavior Control Programmer.” Thus, users who are using versions below

1.26 should visit www.robotis.com and download the latest version and install it.

To see what version is installed, go to “help -> Behavior Control Programmer

Information.”

 <Note: Make sure that CM-5 is at least Ver. 1.13>

 AX-12 program is updated in behavior control programmer. Only versions above

Ver 1.13 are applicable. Thus, if you have versions below Ver 1.13, go to

www.robotis.com and download the latest CM-5 program and run the CM-5

upgrade by referring to the “10-1. CM-5 Program Upgrade.” To see the version

of CM-5, refer to the“Robot Terminal” of “8. 1. Setting the ID and Dynamixel

Search.”

Step 1 As shown below, connect to the PC and CM-5 and turn on the power. At this point,

AX-12 must be connected to the CM-5 to update. Also, pre-assembled robot can

be connected at this time. AX-12 that will be updated must have ID between 1 and

19. If there is ID that exceed this range, correct it before running update. Also,

keep in mind that AX-12 that has redundant ID will not update properly.

 Connect to the CM-5

Connect to the PC

139

http://www.robotis.com/
http://www.robotis.com/

 User’s Guide

Step 2 Execute the behavior control programmer.

Step 3 From “Manage” menu, select “AX-12 update” as shown below.

tep 4 If you see “Can not connect to CM-5!”message, set “Com port” properly and

S

click “CM-5 connect” button.

140

 User’s Guide

Step 5 After connection, click “Download” button.

ww.robotis.com

Step 6 Select AX-12 program file.

Go to Robotis homepage, w and download the latest version. We

.

tep 7 You will see the update progress on the print screen window

recommend that you periodically check out the homepage for the latest updates

S

 While updating make sure that CM-5 power is not turned off.

141

 User’s Guide

Step 8 If you get the message indicating update completion, click “close” button to

close the AX-12 program update.

142

